{"title":"Mixed-dimensional clay-based superhydrophilic film with self-desalination and high photothermal conversion efficiency","authors":"Wenxiao Mu, Weidong Liang, Yanqing Wang, Hanxue Sun, Zhaoqi Zhu, Jiyan Li","doi":"10.1007/s10853-023-08269-x","DOIUrl":null,"url":null,"abstract":"<div><p>Improving solar energy conversion efficiency and salt resistance is particularly important for the practical application of green and sustainable solar steam generation technology. In this work, an interfacial evaporation polypyrrole-coated film was fabricated by the mixed-dimensional clay consisting of 1D palygorskite (Pal), 2D montmorillonite (Mt) and mica, etc., that was intercalated using polyaniline (PANI) and then introduced polyvinyl pyrrolidone (PVP) as pore-forming agent and polyvinylidene fluoride (PVDF) as a base film. The prepared film could efficiently convert light energy to heat under solar irradiation with excellent properties of self-desalination and photothermal conversion efficiency as well as superhydrophilicity and low thermal conductivity. The photothermal conversion efficiency achieved up to 93.6% under the simulated sunlight of 1 kW m<sup>−2</sup><sub>.</sub> The evaporation rate in 15% NaCl brine differed very little from that in pure water, and 0.2 g of NaCl placed on the film would be eliminated in short time at room temperature, which demonstrated that the film had salt resistance and self-cleaning capability. In addition, the resulting film had low thermal conductivity (0.09994 W m<sup>−1</sup> K<sup>−1</sup>) and good mechanical properties (tensile strength of 1.1 MPa) and exhibited superhydrophilicity (water contact angle ~ 0°) which could transport water molecules rapidly.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"58 8","pages":"3709 - 3722"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-023-08269-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Improving solar energy conversion efficiency and salt resistance is particularly important for the practical application of green and sustainable solar steam generation technology. In this work, an interfacial evaporation polypyrrole-coated film was fabricated by the mixed-dimensional clay consisting of 1D palygorskite (Pal), 2D montmorillonite (Mt) and mica, etc., that was intercalated using polyaniline (PANI) and then introduced polyvinyl pyrrolidone (PVP) as pore-forming agent and polyvinylidene fluoride (PVDF) as a base film. The prepared film could efficiently convert light energy to heat under solar irradiation with excellent properties of self-desalination and photothermal conversion efficiency as well as superhydrophilicity and low thermal conductivity. The photothermal conversion efficiency achieved up to 93.6% under the simulated sunlight of 1 kW m−2. The evaporation rate in 15% NaCl brine differed very little from that in pure water, and 0.2 g of NaCl placed on the film would be eliminated in short time at room temperature, which demonstrated that the film had salt resistance and self-cleaning capability. In addition, the resulting film had low thermal conductivity (0.09994 W m−1 K−1) and good mechanical properties (tensile strength of 1.1 MPa) and exhibited superhydrophilicity (water contact angle ~ 0°) which could transport water molecules rapidly.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.