Geo-additive mixed model with variable selection using the adaptive elastic net to handle nonresponse in official rice productivity survey

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Muhlis Ardiansyah , Hari Wijayanto , Anang Kurnia , Anik Djuraidah
{"title":"Geo-additive mixed model with variable selection using the adaptive elastic net to handle nonresponse in official rice productivity survey","authors":"Muhlis Ardiansyah ,&nbsp;Hari Wijayanto ,&nbsp;Anang Kurnia ,&nbsp;Anik Djuraidah","doi":"10.1016/j.spasta.2023.100761","DOIUrl":null,"url":null,"abstract":"<div><p>This study is motivated by the nonresponse problem in the official rice productivity survey conducted by Statistics<span><span> Indonesia. Handling nonresponse is essential to support the vision as a quality statistical data provider for advanced Indonesia. This study aimed to improve the quality of official rice productivity data by imputing nonresponse data using the geo-additive mixed model with variable selection. Then we simulated three nonresponse data scenarios to determine whether the imputation technique is better than the listwise deletion. The results showed that the proposed imputation model was the best-imputed model for estimating rice productivity compared to the linear regression, SVM<span><span>, and geo-additive mixed models without variable selection. The proposed model outperforms other models when the data conditions experience spatial autocorrelation and </span>multicollinearity. The proposed model had two advantages. First, variable selection using the adaptive </span></span>elastic net<span><span><span> could overcome multicollinearity problems. Second, adding the mixed geo-additive function caused the model’s residuals to have no spatial autocorrelation. We showed by simulation using empirical data that the proposed </span>imputation method reduces bias when the nonresponse data is not random. Our methodology presents a valuable alternative for improving the quality of </span>official statistics.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study is motivated by the nonresponse problem in the official rice productivity survey conducted by Statistics Indonesia. Handling nonresponse is essential to support the vision as a quality statistical data provider for advanced Indonesia. This study aimed to improve the quality of official rice productivity data by imputing nonresponse data using the geo-additive mixed model with variable selection. Then we simulated three nonresponse data scenarios to determine whether the imputation technique is better than the listwise deletion. The results showed that the proposed imputation model was the best-imputed model for estimating rice productivity compared to the linear regression, SVM, and geo-additive mixed models without variable selection. The proposed model outperforms other models when the data conditions experience spatial autocorrelation and multicollinearity. The proposed model had two advantages. First, variable selection using the adaptive elastic net could overcome multicollinearity problems. Second, adding the mixed geo-additive function caused the model’s residuals to have no spatial autocorrelation. We showed by simulation using empirical data that the proposed imputation method reduces bias when the nonresponse data is not random. Our methodology presents a valuable alternative for improving the quality of official statistics.

用自适应弹性网处理官方水稻生产力调查中的无响应变量选择的地理加性混合模型
本研究的动机是由印度尼西亚统计局进行的官方水稻生产力调查中的无响应问题。处理无响应对于支持作为先进的印度尼西亚的高质量统计数据提供者的愿景至关重要。为了提高官方水稻产量数据的质量,本研究采用具有变量选择的地理加性混合模型对非响应数据进行输入。然后,我们模拟了三种无响应数据场景,以确定插入技术是否优于列表删除技术。结果表明,与线性回归模型、支持向量机模型和无变量选择的地理加性混合模型相比,该模型是估算水稻产量的最佳模型。当数据条件经历空间自相关和多重共线性时,该模型优于其他模型。提出的模型有两个优点。首先,利用自适应弹性网络进行变量选择可以克服多重共线性问题。其次,混合地相加函数的加入使模型残差不具有空间自相关性。通过经验数据的仿真表明,该方法在非响应数据非随机时减小了偏差。我们的方法为提高官方统计的质量提供了一个有价值的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信