{"title":"A novel hybrid Harris hawk optimization and sine cosine algorithm based home energy management system for residential buildings","authors":"K. Paul, Debolina Hati","doi":"10.1177/01436244231170387","DOIUrl":null,"url":null,"abstract":"Smart grid technology has given users the ability to regulate their home energy in a much more effective manner. In such scenarios, Home Energy Management (HEM) potentially becomes an arduous task, as it necessitates the optimal scheduling of smart appliances in order to reduce energy usage. In this research, a hybrid Harris Hawk Optimization-Sine Cosine Algorithm (hHHO-SCA) has been proposed to develop a meta-heuristic-based HEM system. The hybridization of HHO with SCA has been done to enhance the exploration and exploitation stages of HHO, hence improving its global search phase and effectively optimizing the energy usages. In addition to this, several knapsacks are utilized to guarantee that load demand for power users does not surpass a certain level during the peak hours. In terms of electricity prices and Peak to Average Ratio (PAR) reduction, the hybridization is demonstrated to be beneficial in achieving the objectives. Simulations are performed for a multi-family housing complex with a range of smart equipment. The results achieved with the proposed approach suggest that hHHO-SCA has been comparatively efficient in terms of cost reduction, and PAR, when compared to the other optimization techniques. Practical Application. This home energy management system can be applied to optimally schedule all the smart appliances in a building to minimize electricity consumption and provide the consumer with potential savings in electricity costs.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244231170387","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Smart grid technology has given users the ability to regulate their home energy in a much more effective manner. In such scenarios, Home Energy Management (HEM) potentially becomes an arduous task, as it necessitates the optimal scheduling of smart appliances in order to reduce energy usage. In this research, a hybrid Harris Hawk Optimization-Sine Cosine Algorithm (hHHO-SCA) has been proposed to develop a meta-heuristic-based HEM system. The hybridization of HHO with SCA has been done to enhance the exploration and exploitation stages of HHO, hence improving its global search phase and effectively optimizing the energy usages. In addition to this, several knapsacks are utilized to guarantee that load demand for power users does not surpass a certain level during the peak hours. In terms of electricity prices and Peak to Average Ratio (PAR) reduction, the hybridization is demonstrated to be beneficial in achieving the objectives. Simulations are performed for a multi-family housing complex with a range of smart equipment. The results achieved with the proposed approach suggest that hHHO-SCA has been comparatively efficient in terms of cost reduction, and PAR, when compared to the other optimization techniques. Practical Application. This home energy management system can be applied to optimally schedule all the smart appliances in a building to minimize electricity consumption and provide the consumer with potential savings in electricity costs.
期刊介绍:
Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.