{"title":"Limit Mixed Hodge Structures of Hyperkähler Manifolds","authors":"A. Soldatenkov","doi":"10.17323/1609-4514-2020-2-423-436","DOIUrl":null,"url":null,"abstract":"This note is inspired by the work of Deligne on the local behavior of Hodge structures at infinity. We study limit mixed Hodge structures of degenerating families of compact hyperk\\\"ahler manifolds. We show that when the monodromy action on $H^2$ has maximal index of unipotency, the limit mixed Hodge structures on all cohomology groups are of Hodge-Tate type.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2020-2-423-436","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
Abstract
This note is inspired by the work of Deligne on the local behavior of Hodge structures at infinity. We study limit mixed Hodge structures of degenerating families of compact hyperk\"ahler manifolds. We show that when the monodromy action on $H^2$ has maximal index of unipotency, the limit mixed Hodge structures on all cohomology groups are of Hodge-Tate type.
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.