Limiting Reinforcement Ratios for Hybrid GFRP/Steel Reinforced Concrete Beams

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
D. Nguyen, Viet Quoc Dang
{"title":"Limiting Reinforcement Ratios for Hybrid GFRP/Steel Reinforced Concrete Beams","authors":"D. Nguyen, Viet Quoc Dang","doi":"10.46604/IJETI.2021.6660","DOIUrl":null,"url":null,"abstract":"In this work, a theoretical approach is proposed for estimating the minimum and maximum reinforcement ratios for hybrid glass fiber reinforced polymer (GFRP)/steel-reinforced concrete beams to prevent sudden and brittle failure as well as the compression failure of concrete before the tension failure of reinforcements. Equilibrium equations were used to develop a method for determining the minimum hybrid GFRP/steel reinforcement ratio. A method for determining the maximum hybrid GFRP/steel reinforcement ratio was also developed based on the equilibrium of forces of the balanced failure mode. For estimating the load-carrying capacity of concrete beams reinforced with hybrid GFRP/steel, less than the minimum and more than the maximum reinforcement ratio is recommended. Comparisons between the proposed expressions, experimental data, and available test results in the literature shows good agreement between the theoretical and experimental data, with a maximum discrepancy of 7%.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/IJETI.2021.6660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

Abstract

In this work, a theoretical approach is proposed for estimating the minimum and maximum reinforcement ratios for hybrid glass fiber reinforced polymer (GFRP)/steel-reinforced concrete beams to prevent sudden and brittle failure as well as the compression failure of concrete before the tension failure of reinforcements. Equilibrium equations were used to develop a method for determining the minimum hybrid GFRP/steel reinforcement ratio. A method for determining the maximum hybrid GFRP/steel reinforcement ratio was also developed based on the equilibrium of forces of the balanced failure mode. For estimating the load-carrying capacity of concrete beams reinforced with hybrid GFRP/steel, less than the minimum and more than the maximum reinforcement ratio is recommended. Comparisons between the proposed expressions, experimental data, and available test results in the literature shows good agreement between the theoretical and experimental data, with a maximum discrepancy of 7%.
玻璃钢/钢筋混凝土混合梁的极限配筋率
在这项工作中,提出了一种理论方法来估计玻璃纤维增强聚合物(GFRP)/钢筋混凝土混合梁的最小和最大配筋率,以防止钢筋拉伸破坏之前混凝土的突然脆性破坏以及压缩破坏。利用平衡方程建立了确定最小混合GFRP/钢筋配筋率的方法。基于平衡破坏模式的力平衡,还提出了一种确定GFRP/钢筋最大混合配筋率的方法。为了估算混合GFRP/钢加固的混凝土梁的承载能力,建议小于最小配筋率,大于最大配筋率。所提出的表达式、实验数据和文献中可用的测试结果之间的比较表明,理论数据和实验数据之间具有良好的一致性,最大差异为7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信