Innovations in Body Force Modeling of Transonic Compressor Blade Rows

IF 0.9 Q4 ENGINEERING, MECHANICAL
D. J. Hill, J. Defoe
{"title":"Innovations in Body Force Modeling of Transonic Compressor Blade Rows","authors":"D. J. Hill, J. Defoe","doi":"10.1155/2018/6398501","DOIUrl":null,"url":null,"abstract":"Aeroengine fans and compressors increasingly operate subject to inlet distortion in the transonic flow regime. In this paper, innovations to low-order numerical modeling of fans and compressors via volumetric source terms (body forces) are presented. The approach builds upon past work to accommodate any axial fan/compressor geometry and ensures accurate work input and efficiency prediction across a range of flow coefficients. In particular, the efficiency drop-off near choke is captured. The model for a particular blade row is calibrated using data from single-passage bladed computations. Compared to full-wheel unsteady computations which include the fan/compressor blades, the source term model approach can reduce computational cost by at least two orders of magnitude through a combination of reducing grid resolution and, critically, eliminating the need for a time-resolved approach. The approach is applied to NASA stage 67. For uniform flow, at 90% corrected speed and peak-efficiency, the body force model is able to predict the total-to-total pressure rise coefficient of the stage to within 1.43% and the isentropic efficiency to within 0.03%. With a 120∘ sector of reduced inlet total pressure, distortion transfer through the machine is well-captured and the associated efficiency penalty predicted with less than 2.7% error.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/6398501","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/6398501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 9

Abstract

Aeroengine fans and compressors increasingly operate subject to inlet distortion in the transonic flow regime. In this paper, innovations to low-order numerical modeling of fans and compressors via volumetric source terms (body forces) are presented. The approach builds upon past work to accommodate any axial fan/compressor geometry and ensures accurate work input and efficiency prediction across a range of flow coefficients. In particular, the efficiency drop-off near choke is captured. The model for a particular blade row is calibrated using data from single-passage bladed computations. Compared to full-wheel unsteady computations which include the fan/compressor blades, the source term model approach can reduce computational cost by at least two orders of magnitude through a combination of reducing grid resolution and, critically, eliminating the need for a time-resolved approach. The approach is applied to NASA stage 67. For uniform flow, at 90% corrected speed and peak-efficiency, the body force model is able to predict the total-to-total pressure rise coefficient of the stage to within 1.43% and the isentropic efficiency to within 0.03%. With a 120∘ sector of reduced inlet total pressure, distortion transfer through the machine is well-captured and the associated efficiency penalty predicted with less than 2.7% error.
跨声速压气机叶片排体力建模的创新
航空发动机风扇和压缩机在跨声速流场中越来越多地受到入口畸变的影响。本文提出了通过体积源项(体力)对风扇和压缩机的低阶数值建模的创新。该方法建立在过去的工作基础上,以适应任何轴流风扇/压缩机的几何形状,并确保在一系列流量系数范围内准确的功输入和效率预测。特别地,捕捉到扼流圈附近的效率下降。使用单通道叶片计算的数据对特定叶片排的模型进行校准。与包括风扇/压缩机叶片的全轮非定常计算相比,源项模型方法可以通过降低网格分辨率和关键地消除对时间分辨方法的需求,将计算成本降低至少两个数量级。该方法应用于美国国家航空航天局第67阶段。对于均匀流动,在90%的修正速度和峰值效率下,体力模型能够预测级的总压升系数在1.43%以内,等熵效率在0.03%以内,通过机器的失真传递被很好地捕捉到,并且相关的效率损失被预测为具有小于2.7%的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信