Sustainable diversity of phage-bacteria systems

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Namiko Mitarai, Anastasios Marantos, Kim Sneppen
{"title":"Sustainable diversity of phage-bacteria systems","authors":"Namiko Mitarai,&nbsp;Anastasios Marantos,&nbsp;Kim Sneppen","doi":"10.1016/j.coisb.2023.100468","DOIUrl":null,"url":null,"abstract":"<div><p>Bacteriophages are central to microbial ecosystems for balancing bacterial populations and promoting evolution by applying strong selection pressure. Here, we review some of the known aspects that modulate phage–bacteria interaction in a way that naturally promotes their coexistence. We focus on the modulations that arise from structural, physical, or physiological constraints. We argue they should play roles in many phage–bacteria systems providing sustainable diversity.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"35 ","pages":"Article 100468"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteriophages are central to microbial ecosystems for balancing bacterial populations and promoting evolution by applying strong selection pressure. Here, we review some of the known aspects that modulate phage–bacteria interaction in a way that naturally promotes their coexistence. We focus on the modulations that arise from structural, physical, or physiological constraints. We argue they should play roles in many phage–bacteria systems providing sustainable diversity.

噬菌体系统的可持续多样性
噬菌体是微生物生态系统的核心,通过施加强大的选择压力来平衡细菌种群并促进进化。在这里,我们回顾了一些已知的方面,这些方面以自然促进噬菌体与细菌共存的方式调节噬菌体与细菌的相互作用。我们专注于由结构、物理或生理约束引起的调节。我们认为它们应该在提供可持续多样性的许多噬菌体-细菌系统中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信