Dimitrios Dimou, José Santos-Victor, Plinio Moreno
{"title":"Robotic hand synergies for in-hand regrasping driven by object information","authors":"Dimitrios Dimou, José Santos-Victor, Plinio Moreno","doi":"10.1007/s10514-023-10101-z","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a conditional generative model to represent dexterous grasp postures of a robotic hand and use it to generate in-hand regrasp trajectories. Our model learns to encode the robotic grasp postures into a low-dimensional space, called Synergy Space, while taking into account additional information about the object such as its size and its shape category. We then generate regrasp trajectories through linear interpolation in this low-dimensional space. The result is that the hand configuration moves from one grasp type to another while keeping the object stable in the hand. We show that our model achieves higher success rate on in-hand regrasping compared to previous methods used for synergy extraction, by taking advantage of the grasp size conditional variable.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 4","pages":"453 - 464"},"PeriodicalIF":3.7000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10101-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10101-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a conditional generative model to represent dexterous grasp postures of a robotic hand and use it to generate in-hand regrasp trajectories. Our model learns to encode the robotic grasp postures into a low-dimensional space, called Synergy Space, while taking into account additional information about the object such as its size and its shape category. We then generate regrasp trajectories through linear interpolation in this low-dimensional space. The result is that the hand configuration moves from one grasp type to another while keeping the object stable in the hand. We show that our model achieves higher success rate on in-hand regrasping compared to previous methods used for synergy extraction, by taking advantage of the grasp size conditional variable.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.