Bayesian Sparse Spiked Covariance Model with a Continuous Matrix Shrinkage Prior

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Fangzheng Xie, J. Cape, C. Priebe, Yanxun Xu
{"title":"Bayesian Sparse Spiked Covariance Model with a Continuous Matrix Shrinkage Prior","authors":"Fangzheng Xie, J. Cape, C. Priebe, Yanxun Xu","doi":"10.1214/21-ba1292","DOIUrl":null,"url":null,"abstract":". We propose a Bayesian methodology for estimating spiked covariance matrices with a jointly sparse structure in high dimensions. The spiked covariance matrix is reparameterized in terms of the latent factor model, where the loading matrix is equipped with a novel matrix spike-and-slab LASSO prior, which is a continuous shrinkage prior for modeling jointly sparse matrices. We establish the rate-optimal posterior contraction for the covariance matrix with respect to the spectral norm as well as that for the principal subspace with respect to the projection spectral norm loss. We also study the posterior contraction rate of the principal subspace with respect to the two-to-infinity norm loss, a novel loss function measuring the distance between subspaces that is able to capture entrywise eigenvector perturbations. We show that the posterior contraction rate with respect to the two-to-infinity norm loss is tighter than that with respect to the routinely used projection spectral norm loss under certain low-rank and bounded coherence conditions. In addition, a point estimator for the principal subspace is proposed with the rate-optimal risk bound with respect to the projection spectral norm loss. The numerical performance of the proposed methodology is assessed through synthetic examples and the analysis of a real-world face data example. 62H25, 62C10; secondary 62H12.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ba1292","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

. We propose a Bayesian methodology for estimating spiked covariance matrices with a jointly sparse structure in high dimensions. The spiked covariance matrix is reparameterized in terms of the latent factor model, where the loading matrix is equipped with a novel matrix spike-and-slab LASSO prior, which is a continuous shrinkage prior for modeling jointly sparse matrices. We establish the rate-optimal posterior contraction for the covariance matrix with respect to the spectral norm as well as that for the principal subspace with respect to the projection spectral norm loss. We also study the posterior contraction rate of the principal subspace with respect to the two-to-infinity norm loss, a novel loss function measuring the distance between subspaces that is able to capture entrywise eigenvector perturbations. We show that the posterior contraction rate with respect to the two-to-infinity norm loss is tighter than that with respect to the routinely used projection spectral norm loss under certain low-rank and bounded coherence conditions. In addition, a point estimator for the principal subspace is proposed with the rate-optimal risk bound with respect to the projection spectral norm loss. The numerical performance of the proposed methodology is assessed through synthetic examples and the analysis of a real-world face data example. 62H25, 62C10; secondary 62H12.
具有连续矩阵收缩先验的贝叶斯稀疏尖刺协方差模型
。提出了一种估计高维联合稀疏结构的尖峰协方差矩阵的贝叶斯方法。利用潜因子模型对尖刺协方差矩阵进行重新参数化,在加载矩阵中建立了一种新的矩阵尖刺-板LASSO先验,这是一种用于联合稀疏矩阵建模的连续收缩先验。我们建立了协方差矩阵相对于谱范数以及主子空间相对于投影谱范数损失的率最优后验收缩。我们还研究了主子空间相对于2到无穷范数损失的后验收缩率,这是一种新的损失函数,测量子空间之间的距离,能够捕获入口方向的特征向量扰动。我们表明,在某些低秩和有界相干条件下,相对于2到无穷范数损失的后验收缩率比相对于常规使用的投影谱范数损失的后验收缩率更紧。此外,针对投影谱范数损失,提出了一个具有速率最优风险界的主子空间点估计。通过综合算例和对真实人脸数据的分析,对所提方法的数值性能进行了评价。62 h25, 62年10大;二次62 h12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信