Power Drive Architectures for Industrial Hydraulic Axes: Energy-Efficiency-Based Comparative Analysis

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY
M. Tiboni
{"title":"Power Drive Architectures for Industrial Hydraulic Axes: Energy-Efficiency-Based Comparative Analysis","authors":"M. Tiboni","doi":"10.3390/app131810066","DOIUrl":null,"url":null,"abstract":"In hydraulic systems, energy dissipation can be significant. The pressure losses that can occur in the hydraulic circuit, which are influenced by the adopted drive architecture, result in power consumption that is often significantly higher than that required by the mechanical system. This paper presents a comparative study of the energy efficiency of five common drive architectures in industrial hydraulic axes. The analysis is applied to a variable speed and force hydraulic blanking press, a fairly common industrial system, e.g., in the manufacture of semi-finished brass products. Standard, regenerative, high–low, variable-displacement pumps and variable speed drive configurations for a fixed-displacement pump were analyzed and compared. In each case, an appropriate and optimized sizing of the different components of the system was performed, and then the energy consumption was estimated for a load cycle common to all the considered cases. The results show that the choice of the power generation architecture of the hydraulic system has a very significant impact on the energy efficiency and consequently on the operating costs and the carbon footprint. The performed quantification of the potential energy efficiency of the considered drive architectures can be very useful in helping to make energy-conscious decisions.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810066","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In hydraulic systems, energy dissipation can be significant. The pressure losses that can occur in the hydraulic circuit, which are influenced by the adopted drive architecture, result in power consumption that is often significantly higher than that required by the mechanical system. This paper presents a comparative study of the energy efficiency of five common drive architectures in industrial hydraulic axes. The analysis is applied to a variable speed and force hydraulic blanking press, a fairly common industrial system, e.g., in the manufacture of semi-finished brass products. Standard, regenerative, high–low, variable-displacement pumps and variable speed drive configurations for a fixed-displacement pump were analyzed and compared. In each case, an appropriate and optimized sizing of the different components of the system was performed, and then the energy consumption was estimated for a load cycle common to all the considered cases. The results show that the choice of the power generation architecture of the hydraulic system has a very significant impact on the energy efficiency and consequently on the operating costs and the carbon footprint. The performed quantification of the potential energy efficiency of the considered drive architectures can be very useful in helping to make energy-conscious decisions.
工业液压轴的动力传动结构:基于能效的比较分析
在液压系统中,能量耗散可能非常重要。液压回路中可能出现的压力损失受到所采用的驱动结构的影响,导致功耗通常显著高于机械系统所需的功耗。本文对工业液压轴中五种常见驱动结构的能效进行了比较研究。该分析应用于变速加力液压冲裁机,这是一种相当常见的工业系统,例如黄铜半成品的制造。对固定排量泵的标准、再生、高-低、可变排量泵和变速驱动配置进行了分析和比较。在每种情况下,对系统的不同组件进行适当和优化的尺寸确定,然后对所有考虑的情况下常见的负载循环的能耗进行估计。结果表明,液压系统发电结构的选择对能源效率有着非常显著的影响,从而影响了运营成本和碳足迹。对所考虑的驱动架构的潜在能量效率进行量化在帮助做出有能量意识的决策方面非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信