{"title":"Differentiability of the largest Lyapunov exponent for planar open billiards","authors":"Amal Al Dowais","doi":"10.1080/14689367.2023.2221193","DOIUrl":null,"url":null,"abstract":"In this paper, we estimate the largest Lyapunov exponent for open billiards in the plane. We show that the largest Lyapunov exponent is differentiable with respect to a billiard deformation.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"556 - 575"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2221193","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we estimate the largest Lyapunov exponent for open billiards in the plane. We show that the largest Lyapunov exponent is differentiable with respect to a billiard deformation.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences