Switching waveform design with gate charge control for power MOSFETs

Hirotaka Oomori, Ichiro Omura
{"title":"Switching waveform design with gate charge control for power MOSFETs","authors":"Hirotaka Oomori,&nbsp;Ichiro Omura","doi":"10.1016/j.pedc.2022.100018","DOIUrl":null,"url":null,"abstract":"<div><p>The switching waveform design, especially controlling and optimizing the slew rate, is an efficient technique to mitigate the trade-off between decreasing the loss and increasing the noise of the switching power device. The digital active gate driver which generates the gate waveform to achieve the designed switching waveform requires a significant computational burden because the optimum driving point is searched automatically and comprehensively. This paper proposes a novel and simple method to calculate gate waveforms to achieve the designed switching waveforms. This method calculates how much gate charge is additionally required to match the designed waveform by exploiting the voltage and current response of the power device to the small gate charge pulse. The validation of this method is demonstrated by simulation in the case of both the drain-source voltage design and the drain current design. The deviation from the designed waveform is quantified in this paper.</p></div>","PeriodicalId":74483,"journal":{"name":"Power electronic devices and components","volume":"3 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772370422000153/pdfft?md5=b83dd185ca87b3991d4b9846e79cd436&pid=1-s2.0-S2772370422000153-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power electronic devices and components","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772370422000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The switching waveform design, especially controlling and optimizing the slew rate, is an efficient technique to mitigate the trade-off between decreasing the loss and increasing the noise of the switching power device. The digital active gate driver which generates the gate waveform to achieve the designed switching waveform requires a significant computational burden because the optimum driving point is searched automatically and comprehensively. This paper proposes a novel and simple method to calculate gate waveforms to achieve the designed switching waveforms. This method calculates how much gate charge is additionally required to match the designed waveform by exploiting the voltage and current response of the power device to the small gate charge pulse. The validation of this method is demonstrated by simulation in the case of both the drain-source voltage design and the drain current design. The deviation from the designed waveform is quantified in this paper.

Abstract Image

功率mosfet的栅极电荷控制开关波形设计
开关波形设计,特别是压摆率的控制和优化,是解决开关电源器件在降低损耗和增加噪声之间权衡的有效方法。数字有源栅极驱动器产生栅极波形以实现所设计的开关波形,其计算量很大,因为它是自动地、全面地寻找最佳驱动点。本文提出了一种新颖、简便的门波形计算方法,以实现所设计的开关波形。该方法通过利用功率器件对小栅极电荷脉冲的电压和电流响应来计算与设计波形匹配所需的栅极电荷的额外数量。通过漏源电压设计和漏极电流设计的仿真验证了该方法的有效性。本文对与设计波形的偏差进行了量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Power electronic devices and components
Power electronic devices and components Hardware and Architecture, Electrical and Electronic Engineering, Atomic and Molecular Physics, and Optics, Safety, Risk, Reliability and Quality
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信