Genomic landscape of T-cell lymphoblastic lymphoma

IF 7 2区 医学 Q1 ONCOLOGY
Zhaoming Li, Yue Song, Mingzhi Zhang, Yiming Wei, Hang Ruan
{"title":"Genomic landscape of T-cell lymphoblastic lymphoma","authors":"Zhaoming Li, Yue Song, Mingzhi Zhang, Yiming Wei, Hang Ruan","doi":"10.21147/j.issn.1000-9604.2022.02.03","DOIUrl":null,"url":null,"abstract":"Objective T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm of precursor T cells, however, detailed genome-wide sequencing of large T-LBL cohorts has not been performed due to its rarity. The purpose of this study was to identify putative driver genes in T-LBL. Methods To gain insight into the genetic mechanisms of T-LBL development, we performed whole-exome sequencing on 41 paired tumor-normal DNA samples from patients with T-LBL. Results We identified 32 putative driver genes using whole-exome sequencing in 41 T-LBL cases, many of which have not previously been described in T-LBL, such as Janus kinase 3 (JAK3), Janus kinase 1 (JAK1), Runt-related transcription factor 1 (RUNX1) and Wilms’ tumor suppressor gene 1 (WT1). When comparing the genetic alterations of T-LBL to T-cell acute lymphoblastic leukemia (T-ALL), we found that JAK-STAT and RAS pathway mutations were predominantly observed in T-LBL (58.5% and 34.1%, respectively), whereas Notch and cell cycle signaling pathways mutations were more prevalent in T-ALL. Notably, besides notch receptor 1 (NOTCH1), mutational status of plant homeodomain (PHD)-like finger protein 6 (PHF6) was identified as another independent factor for good prognosis. Of utmost interest is that co-existence of PHF6 and NOTCH1 mutation status might provide an alternative for early therapeutic stratification in T-LBL. Conclusions Together, our findings will not only provide new insights into the molecular and genetic mechanisms of T-LBL, but also have tangible implications for clinical practice.","PeriodicalId":9882,"journal":{"name":"Chinese Journal of Cancer Research","volume":"34 1","pages":"83 - 94"},"PeriodicalIF":7.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21147/j.issn.1000-9604.2022.02.03","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Objective T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm of precursor T cells, however, detailed genome-wide sequencing of large T-LBL cohorts has not been performed due to its rarity. The purpose of this study was to identify putative driver genes in T-LBL. Methods To gain insight into the genetic mechanisms of T-LBL development, we performed whole-exome sequencing on 41 paired tumor-normal DNA samples from patients with T-LBL. Results We identified 32 putative driver genes using whole-exome sequencing in 41 T-LBL cases, many of which have not previously been described in T-LBL, such as Janus kinase 3 (JAK3), Janus kinase 1 (JAK1), Runt-related transcription factor 1 (RUNX1) and Wilms’ tumor suppressor gene 1 (WT1). When comparing the genetic alterations of T-LBL to T-cell acute lymphoblastic leukemia (T-ALL), we found that JAK-STAT and RAS pathway mutations were predominantly observed in T-LBL (58.5% and 34.1%, respectively), whereas Notch and cell cycle signaling pathways mutations were more prevalent in T-ALL. Notably, besides notch receptor 1 (NOTCH1), mutational status of plant homeodomain (PHD)-like finger protein 6 (PHF6) was identified as another independent factor for good prognosis. Of utmost interest is that co-existence of PHF6 and NOTCH1 mutation status might provide an alternative for early therapeutic stratification in T-LBL. Conclusions Together, our findings will not only provide new insights into the molecular and genetic mechanisms of T-LBL, but also have tangible implications for clinical practice.
T细胞淋巴母细胞淋巴瘤的基因组景观
目的T细胞淋巴母细胞淋巴瘤(T-LBL)是前体T细胞的侵袭性肿瘤,然而 由于其罕见性,尚未进行大型T-LBL队列。本研究的目的是鉴定T-LBL中假定的驱动基因。方法为了深入了解T-LBL发生的遗传机制,我们对41份来自T-LBL患者的配对肿瘤正常DNA样本进行了全外显子组测序。结果我们在41例T-LBL病例中使用全外显子组测序鉴定了32个假定的驱动基因,其中许多先前未在T-LBL中描述,如Janus激酶3(JAK3)、Janus激酶1(JAK1)、Runt相关转录因子1(RUNX1)和Wilms抑癌基因1(WT1)。当比较T-LBL和T细胞急性淋巴细胞白血病(T-ALL)的基因改变时,我们发现JAK-STAT和RAS通路突变主要在T-LBL中观察到(分别为58.5%和34.1%),而Notch和细胞周期信号通路突变在T-ALL中更普遍。值得注意的是,除了notch受体1(NOTCH1)外,植物同源结构域(PHD)样指状蛋白6(PHF6)的突变状态被确定为预后良好的另一个独立因素。最令人感兴趣的是,PHF6和NOTCH1突变状态的共存可能为T-LBL的早期治疗分层提供一种替代方案。结论总之,我们的研究结果不仅将为T-LBL的分子和遗传机制提供新的见解,而且对临床实践具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
9.80%
发文量
1726
审稿时长
4.5 months
期刊介绍: Chinese Journal of Cancer Research (CJCR; Print ISSN: 1000-9604; Online ISSN:1993-0631) is published by AME Publishing Company in association with Chinese Anti-Cancer Association.It was launched in March 1995 as a quarterly publication and is now published bi-monthly since February 2013. CJCR is published bi-monthly in English, and is an international journal devoted to the life sciences and medical sciences. It publishes peer-reviewed original articles of basic investigations and clinical observations, reviews and brief communications providing a forum for the recent experimental and clinical advances in cancer research. This journal is indexed in Science Citation Index Expanded (SCIE), PubMed/PubMed Central (PMC), Scopus, SciSearch, Chemistry Abstracts (CA), the Excerpta Medica/EMBASE, Chinainfo, CNKI, CSCI, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信