Xiangbing Zhu, Yuge Bi, J. Du, Xinchao Gao, Eerdumutu Jin, Fei Hao
{"title":"GRASSLAND RAT-HOLE RECOGNITION AND CLASSIFICATION BASED ON ATTENTION METHOD AND UNMANNED AERIAL VEHICLE HYPERSPECTRAL REMOTE SENSING","authors":"Xiangbing Zhu, Yuge Bi, J. Du, Xinchao Gao, Eerdumutu Jin, Fei Hao","doi":"10.35633/inmateh-70-17","DOIUrl":null,"url":null,"abstract":"Rat-hole area and number of rat holes are indicators of the level of degradation and rat damage in grassland environments. However, rat-hole monitoring has consistently relied on manual ground surveys, leading to extremely low efficiency and accuracy. In this paper, a convolutional block attention module (CBAM) model suitable for rat-hole recognition in desert grassland monitoring, called grassland monitoring-CBAM, is proposed that comprehensively incorporates unmanned aerial vehicle hyperspectral remote-sensing technology and deep-learning methods. Validation results show that the overall accuracy and Kappa coefficient of the model were 99.35% and 98.90%, which were 3.96% and 3.35% higher, respectively, than those of the basic model. This study represents a breakthrough in the intelligent interpretation of rat holes and provides technical support for the subsequent rapid interpretation of grassland rat holes and rat damage evaluation. It also provides a solution for the fine classification and quantitative inversion of similar landscape features.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-70-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Rat-hole area and number of rat holes are indicators of the level of degradation and rat damage in grassland environments. However, rat-hole monitoring has consistently relied on manual ground surveys, leading to extremely low efficiency and accuracy. In this paper, a convolutional block attention module (CBAM) model suitable for rat-hole recognition in desert grassland monitoring, called grassland monitoring-CBAM, is proposed that comprehensively incorporates unmanned aerial vehicle hyperspectral remote-sensing technology and deep-learning methods. Validation results show that the overall accuracy and Kappa coefficient of the model were 99.35% and 98.90%, which were 3.96% and 3.35% higher, respectively, than those of the basic model. This study represents a breakthrough in the intelligent interpretation of rat holes and provides technical support for the subsequent rapid interpretation of grassland rat holes and rat damage evaluation. It also provides a solution for the fine classification and quantitative inversion of similar landscape features.