S. Mahmood, Tan Cheh Phey, Lee Seow Kheng, Ke Chen, U. Mandal
{"title":"Formulation, characterisation and comparison of different raloxifene hydrochloride loaded lipid-polymer hybrid nanoparticles","authors":"S. Mahmood, Tan Cheh Phey, Lee Seow Kheng, Ke Chen, U. Mandal","doi":"10.1504/ijnbm.2020.10034537","DOIUrl":null,"url":null,"abstract":"This study aims to formulate raloxifene loaded lipid-polymeric hybrid nanoparticles (LPHNPs) and the comparison of their properties. Three LPHNPs, each with phosphatidylcholine-lipid (PCL) as bilayer-forming-membrane with three different polymers like sodium alginate, chitosan and poly(lactic-co-glycolic-acid) were prepared by nanoprecipitation, solvent injection and emulsion solvent evaporation, respectively. Results showed that the prepared formulations were spherical-shaped with a heterogeneity. Surface morphology was viewed using a scanning electron microscopy (SEM). A high entrapment efficiency (>70%) with a sustained and pH dependent drug release profile for 24 h was observed and evaluated using mathematical kinetic modelling. Fourier transform infrared spectroscopy was used to confirm successful entrapment of raloxifene after evaluating the interaction and compatibility of the excipients used. Whereas, differential scanning calorimetry and X-ray diffraction revealed the transformation of raloxifene into an amorphous form. In conclusion, these hybrid nanoparticles provide a promising approach for oral delivery of raloxifene.","PeriodicalId":13999,"journal":{"name":"International Journal of Nano and Biomaterials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nano and Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnbm.2020.10034537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1
Abstract
This study aims to formulate raloxifene loaded lipid-polymeric hybrid nanoparticles (LPHNPs) and the comparison of their properties. Three LPHNPs, each with phosphatidylcholine-lipid (PCL) as bilayer-forming-membrane with three different polymers like sodium alginate, chitosan and poly(lactic-co-glycolic-acid) were prepared by nanoprecipitation, solvent injection and emulsion solvent evaporation, respectively. Results showed that the prepared formulations were spherical-shaped with a heterogeneity. Surface morphology was viewed using a scanning electron microscopy (SEM). A high entrapment efficiency (>70%) with a sustained and pH dependent drug release profile for 24 h was observed and evaluated using mathematical kinetic modelling. Fourier transform infrared spectroscopy was used to confirm successful entrapment of raloxifene after evaluating the interaction and compatibility of the excipients used. Whereas, differential scanning calorimetry and X-ray diffraction revealed the transformation of raloxifene into an amorphous form. In conclusion, these hybrid nanoparticles provide a promising approach for oral delivery of raloxifene.
期刊介绍:
In recent years, frontiers of research in engineering, science and technology have been driven by developments in nanomaterials, encompassing a diverse range of disciplines such as materials science, biomedical engineering, nanomedicine and biology, manufacturing technology, biotechnology, nanotechnology, and nanoelectronics. IJNBM provides an interdisciplinary vehicle covering these fields. Advanced materials inspired by biological systems and processes are likely to influence the development of novel technologies for a wide variety of applications from vaccines to artificial tissues and organs to quantum computers. Topics covered include Nanostructured materials/surfaces/interfaces Synthesis of nanostructures Biological/biomedical materials Artificial organs/tissues Tissue engineering Bioengineering materials Medical devices Functional/structural nanomaterials Carbon-based materials Nanomaterials characterisation Novel applications of nanomaterials Modelling of behaviour of nanomaterials Nanomaterials for biomedical applications Biological response to nanomaterials.