Coffee pulp pretreatment methods: A comparative analysis of hydrolysis efficiency

IF 1.3 Q4 FOOD SCIENCE & TECHNOLOGY
Do Viet Phuong, Luu Thao Nguyen
{"title":"Coffee pulp pretreatment methods: A comparative analysis of hydrolysis efficiency","authors":"Do Viet Phuong, Luu Thao Nguyen","doi":"10.21603/2308-4057-2024-1-594","DOIUrl":null,"url":null,"abstract":"The Vietnamese food industry produces a lot of coffee pulp, which is a valuable and abundant source of agricultural by-products. It contains a lot of cellulose, which can be converted into bioethanol. However, coffee pulp needs an extensive pretreatment to reduce the amount of lignin and hemicellulose while retaining the initial cellulose composition. This study compared several pre-hydrolysis and pre-fermentation pretreatment methods which involved H2SO4, NaOH, microwaves, and white rot fungus Phanerochaete chrysosporium. \nThe hemicellulose dropped by 43.8% after the acidic pretreatment, by 47.1% after the alkaline pretreatment, and by 12.8% after the microbial pretreatment. The lignin contents dropped by 4.2, 76.6, and 50.2% after acidic, alkaline, and microbial pretreatment, respectively. The removal of hemicellulose and lignin in the coffee pulp was much more efficient when two or three of the pretreatment methods were combined. The microwave-assisted acid and alkaline pretreatment was the most efficient method: it removed 71.3% of hemicellulose and 79.2% of lignin. The combined method also had the highest amount of reducing sugars and glucose in hydrolysate. Additionally, concentrations of such yeast inhibitors as 5-hydroxymethyl-2-furaldehyde (HMF) and furfural were 2.11 and 3.37 g/L, respectively. \nThe acid pretreatment was effective only in removing hemicellulose while the alkaline pretreatment was effective in lignin removal; the fungal pretreatment had low results for both hemicellulose and lignin removals. Therefore, the combined pretreatment method was found optimal for coffee pulp.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods and Raw Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2308-4057-2024-1-594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Vietnamese food industry produces a lot of coffee pulp, which is a valuable and abundant source of agricultural by-products. It contains a lot of cellulose, which can be converted into bioethanol. However, coffee pulp needs an extensive pretreatment to reduce the amount of lignin and hemicellulose while retaining the initial cellulose composition. This study compared several pre-hydrolysis and pre-fermentation pretreatment methods which involved H2SO4, NaOH, microwaves, and white rot fungus Phanerochaete chrysosporium. The hemicellulose dropped by 43.8% after the acidic pretreatment, by 47.1% after the alkaline pretreatment, and by 12.8% after the microbial pretreatment. The lignin contents dropped by 4.2, 76.6, and 50.2% after acidic, alkaline, and microbial pretreatment, respectively. The removal of hemicellulose and lignin in the coffee pulp was much more efficient when two or three of the pretreatment methods were combined. The microwave-assisted acid and alkaline pretreatment was the most efficient method: it removed 71.3% of hemicellulose and 79.2% of lignin. The combined method also had the highest amount of reducing sugars and glucose in hydrolysate. Additionally, concentrations of such yeast inhibitors as 5-hydroxymethyl-2-furaldehyde (HMF) and furfural were 2.11 and 3.37 g/L, respectively. The acid pretreatment was effective only in removing hemicellulose while the alkaline pretreatment was effective in lignin removal; the fungal pretreatment had low results for both hemicellulose and lignin removals. Therefore, the combined pretreatment method was found optimal for coffee pulp.
咖啡浆预处理方法:水解效率的比较分析
越南食品工业生产大量咖啡浆,这是一种宝贵而丰富的农业副产品来源。它含有大量纤维素,可以转化为生物乙醇。然而,咖啡浆需要进行广泛的预处理,以减少木质素和半纤维素的含量,同时保持初始的纤维素组成。本研究比较了几种预水解和预发酵预处理方法,包括H2SO4、NaOH、微波和白腐真菌黄孢原毛平革菌。酸性预处理后半纤维素下降43.8%,碱性预处理后下降47.1%,微生物预处理后降低12.8%。经过酸性、碱性和微生物预处理后,木质素含量分别下降了4.2%、76.6%和50.2%。当两种或三种预处理方法相结合时,咖啡浆中半纤维素和木质素的去除效率要高得多。微波辅助酸碱预处理是最有效的方法:它去除了71.3%的半纤维素和79.2%的木质素。联合方法的水解产物中还原糖和葡萄糖的含量也最高。此外,5-羟甲基-2-糠醛(HMF)和糠醛等酵母抑制剂的浓度分别为2.11和3.37g/L。酸预处理仅能有效去除半纤维素,而碱预处理能有效去除木质素;真菌预处理对半纤维素和木质素的去除效果都很低。因此,发现组合预处理方法是咖啡浆的最佳预处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foods and Raw Materials
Foods and Raw Materials FOOD SCIENCE & TECHNOLOGY-
CiteScore
3.70
自引率
20.00%
发文量
39
审稿时长
24 weeks
期刊介绍: The journal «Foods and Raw Materials» is published from 2013. It is published in the English and German languages with periodicity of two volumes a year. The main concern of the journal «Foods and Raw Materials» is informing the scientific community on the works by the researchers from Russia and the CIS, strengthening the world position of the science they represent, showing the results of perspective scientific researches in the food industry and related branches. The main tasks of the Journal consist the publication of scientific research results and theoretical and experimental studies, carried out in the Russian and foreign organizations, as well as on the authors'' personal initiative; bringing together different categories of researchers, university and scientific intelligentsia; to create and maintain a common space of scientific communication, bridging the gap between the publications of regional, federal and international level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信