Progress of graphdiyne-based materials for anodes of alkali metal ion batteries

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manman Liu, Yue Ma, Xiaofeng Fan, D. J. Singh, W. Zheng
{"title":"Progress of graphdiyne-based materials for anodes of alkali metal ion batteries","authors":"Manman Liu, Yue Ma, Xiaofeng Fan, D. J. Singh, W. Zheng","doi":"10.1088/2399-1984/ac62e6","DOIUrl":null,"url":null,"abstract":"Graphdiyne (GDY)-based materials are carbon allotropes with a two-dimensional (2D) planar structure composed of diacetylene bonds (sp) and sp 2 hybridized carbons. Their unique geometrical and electronic structure give them excellent electrochemical properties. The larger specific surface area and ion-diffusion channels in pores can provide more storage sites for alkali metal ions and increase the diffusion rate of electrons and ions. Hence, GDY-based materials possess broad prospects in electrochemical energy storage and have gained more favor as anode materials for alkali ion batteries. Here, we have made a systematic summary of GDY-based materials and their derivatives, including the geometrical and electronic structures, synthesis, modifications, and storage mechanisms of Li+/Na+/K+, along with the applications in Li+/Na+/K+ batteries. In view of the current situation, the large-scale application of GDY-based materials as anodes in alkali ion batteries is still a great challenge. We hope that this work can provide a theoretical basis for GDY-based materials with superior performance, more convenient and safer preparation, and higher yield.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/ac62e6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Graphdiyne (GDY)-based materials are carbon allotropes with a two-dimensional (2D) planar structure composed of diacetylene bonds (sp) and sp 2 hybridized carbons. Their unique geometrical and electronic structure give them excellent electrochemical properties. The larger specific surface area and ion-diffusion channels in pores can provide more storage sites for alkali metal ions and increase the diffusion rate of electrons and ions. Hence, GDY-based materials possess broad prospects in electrochemical energy storage and have gained more favor as anode materials for alkali ion batteries. Here, we have made a systematic summary of GDY-based materials and their derivatives, including the geometrical and electronic structures, synthesis, modifications, and storage mechanisms of Li+/Na+/K+, along with the applications in Li+/Na+/K+ batteries. In view of the current situation, the large-scale application of GDY-based materials as anodes in alkali ion batteries is still a great challenge. We hope that this work can provide a theoretical basis for GDY-based materials with superior performance, more convenient and safer preparation, and higher yield.
碱金属离子电池负极石墨烯基材料研究进展
石墨炔(GDY)基材料是由二乙炔键(sp)和sp 2杂化碳组成的二维(2D)平面结构的碳同素异形体材料。其独特的几何结构和电子结构使其具有优异的电化学性能。孔隙中较大的比表面积和离子扩散通道可以为碱金属离子提供更多的存储位点,提高电子和离子的扩散速率。因此,gdd基材料在电化学储能方面具有广阔的应用前景,作为碱离子电池的负极材料受到越来越多的青睐。本文系统综述了gdd基材料及其衍生物的几何结构、电子结构、Li+/Na+/K+的合成、改性、存储机理以及在Li+/Na+/K+电池中的应用。就目前的情况来看,gdd基材料作为阳极在碱离子电池中的大规模应用仍然是一个很大的挑战。我们希望这项工作能为性能更优、制备更方便、更安全、收率更高的gdd基材料提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Futures
Nano Futures Chemistry-General Chemistry
CiteScore
4.30
自引率
0.00%
发文量
35
期刊介绍: Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信