Understanding non-motorists' views on automated vehicle safety through Bayesian network analysis and latent dirichlet allocation

IF 4.3 Q2 TRANSPORTATION
{"title":"Understanding non-motorists' views on automated vehicle safety through Bayesian network analysis and latent dirichlet allocation","authors":"","doi":"10.1016/j.ijtst.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Automated vehicles (AVs) hold great promise for creating a safer, more efficient, more equitable, and more sustainable transportation system. However, the rapid adoption of AVs requires a thorough understanding in their coexistence with the human environment in the current roadway network, particularly with respect to interactions between AVs and non-motorists. Bike Pittsburgh (BikePGH) conducted a 2019 survey to examine non-motorists' perceptions of AV safety. Using Bayesian network (BN) analysis, the study identified key factors such as safety perception, AV technology knowledge, and real-world interaction experiences that influence non-motorists' overall perception of AV safety using BikePGH survey data. The study also explored several counterfactual scenarios to gain insights into non-motorists' viewpoints on AV safety. Notably, the study found that the differences in the ways of AVs and human-driven vehicles interacted with non-motorists at intersections played a crucial role in shaping survey participants' opinions. By taking into account the key insights identified in this study, policymakers can develop evidence-based strategies to achieve sustainable urban mobility goals while ensuring the safety and well-being of all road users, particularly non-motorists.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2046043023000515/pdfft?md5=55e3e497cb2fdf90bc69fe8356bff514&pid=1-s2.0-S2046043023000515-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043023000515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Automated vehicles (AVs) hold great promise for creating a safer, more efficient, more equitable, and more sustainable transportation system. However, the rapid adoption of AVs requires a thorough understanding in their coexistence with the human environment in the current roadway network, particularly with respect to interactions between AVs and non-motorists. Bike Pittsburgh (BikePGH) conducted a 2019 survey to examine non-motorists' perceptions of AV safety. Using Bayesian network (BN) analysis, the study identified key factors such as safety perception, AV technology knowledge, and real-world interaction experiences that influence non-motorists' overall perception of AV safety using BikePGH survey data. The study also explored several counterfactual scenarios to gain insights into non-motorists' viewpoints on AV safety. Notably, the study found that the differences in the ways of AVs and human-driven vehicles interacted with non-motorists at intersections played a crucial role in shaping survey participants' opinions. By taking into account the key insights identified in this study, policymakers can develop evidence-based strategies to achieve sustainable urban mobility goals while ensuring the safety and well-being of all road users, particularly non-motorists.

通过贝叶斯网络分析和潜在狄利克雷分配,了解非驾驶人对自动驾驶汽车安全的看法
自动驾驶汽车(AVs)有望创造一个更安全、更高效、更公平、更可持续的交通系统。然而,要快速采用自动驾驶汽车,就必须充分了解其与当前道路网络中人类环境的共存情况,特别是自动驾驶汽车与非驾驶员之间的互动情况。匹兹堡自行车公司(BikePGH)于 2019 年开展了一项调查,以研究非机动车驾驶者对自动驾驶汽车安全性的看法。通过贝叶斯网络(BN)分析,该研究利用 BikePGH 的调查数据确定了影响非机动车驾驶者对自动驾驶汽车安全总体看法的关键因素,如安全看法、自动驾驶汽车技术知识和现实世界中的互动经验。研究还探讨了几种反事实情景,以深入了解非机动车驾驶者对自动驾驶汽车安全的看法。值得注意的是,研究发现,在交叉路口,自动驾驶汽车和人类驾驶车辆与非机动车驾驶员的互动方式不同,这在影响调查参与者的观点方面起到了至关重要的作用。通过考虑本研究中发现的关键见解,政策制定者可以制定基于证据的战略,以实现可持续的城市交通目标,同时确保所有道路使用者(尤其是非机动车驾驶者)的安全和福祉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信