Zhao-Min Chen, Xin Jin, Xiaoqin Zhang, C. Xia, Zhiyong Pan, Ruoxi Deng, Jie Hu, Heng Chen
{"title":"DIM: long-tailed object detection and instance segmentation via dynamic instance memory","authors":"Zhao-Min Chen, Xin Jin, Xiaoqin Zhang, C. Xia, Zhiyong Pan, Ruoxi Deng, Jie Hu, Heng Chen","doi":"10.1088/2632-2153/acf362","DOIUrl":null,"url":null,"abstract":"Object detection and instance segmentation have been successful on benchmarks with relatively balanced category distribution (e.g. MSCOCO). However, state-of-the-art object detection and segmentation methods still struggle to generalize on long-tailed datasets (e.g. LVIS), where a few classes (head classes) dominate the instance samples, while most classes (tailed classes) have only a few samples. To address this challenge, we propose a plug-and-play module within the Mask R-CNN framework called dynamic instance memory (DIM). Specifically, we augment Mask R-CNN with an auxiliary branch for training. It maintains a dynamic memory bank storing an instance-level prototype representation for each category, and shares the classifier with the existing instance branch. With a simple metric loss, the representations in DIM can be dynamically updated by the instance proposals in the mini-batch during training. Our DIM introduces a bias toward tailed classes to the classifier learning along with a class frequency reversed sampler, which learns generalizable representations from the original data distribution, complementing the existing instance branch. Comprehensive experiments on LVIS demonstrate the effectiveness of DIM, as well as the significant advantages of DIM over the baseline Mask R-CNN.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/acf362","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Object detection and instance segmentation have been successful on benchmarks with relatively balanced category distribution (e.g. MSCOCO). However, state-of-the-art object detection and segmentation methods still struggle to generalize on long-tailed datasets (e.g. LVIS), where a few classes (head classes) dominate the instance samples, while most classes (tailed classes) have only a few samples. To address this challenge, we propose a plug-and-play module within the Mask R-CNN framework called dynamic instance memory (DIM). Specifically, we augment Mask R-CNN with an auxiliary branch for training. It maintains a dynamic memory bank storing an instance-level prototype representation for each category, and shares the classifier with the existing instance branch. With a simple metric loss, the representations in DIM can be dynamically updated by the instance proposals in the mini-batch during training. Our DIM introduces a bias toward tailed classes to the classifier learning along with a class frequency reversed sampler, which learns generalizable representations from the original data distribution, complementing the existing instance branch. Comprehensive experiments on LVIS demonstrate the effectiveness of DIM, as well as the significant advantages of DIM over the baseline Mask R-CNN.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.