"A visual and numerical comparative study of some parallel affine projection algorithms for solving the convex feasibility problem with application to scratch inpainting"

IF 1.4 4区 数学 Q1 MATHEMATICS
Irina Maria Artinescu, C. Boldea
{"title":"\"A visual and numerical comparative study of some parallel affine projection algorithms for solving the convex feasibility problem with application to scratch inpainting\"","authors":"Irina Maria Artinescu, C. Boldea","doi":"10.37193/cjm.2022.02.03","DOIUrl":null,"url":null,"abstract":"\"The paper compares four variants of algorithms that solve the problem of Convex Feasibility using affine combinations of projections, two classical variants of Parallel Projection Method (PPM) and two modified variants that involve variable weight, in terms of their effectiveness in inpainting a convex polygon, as well as in terms of their convergence in a finite a number of step. We also present a numerical study of the dependence of the efficiency and the execution speed of these algorithms on the shape of the inpainted convex set, as well as on the values of the relaxation parameter.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"The paper compares four variants of algorithms that solve the problem of Convex Feasibility using affine combinations of projections, two classical variants of Parallel Projection Method (PPM) and two modified variants that involve variable weight, in terms of their effectiveness in inpainting a convex polygon, as well as in terms of their convergence in a finite a number of step. We also present a numerical study of the dependence of the efficiency and the execution speed of these algorithms on the shape of the inpainted convex set, as well as on the values of the relaxation parameter."
“求解凸可行性问题的几种平行仿射投影算法在划痕修复中的应用的可视化和数值比较研究”
“本文比较了使用投影的仿射组合来解决凸可行性问题的四种算法变体,这是并行投影方法(PPM)的两种经典变体以及两个涉及可变权重的修改变体,就其在修复凸多边形方面的有效性而言,以及就其在有限步数中的收敛性而言。我们还对这些算法的效率和执行速度与修复凸集的形状以及松弛参数值的相关性进行了数值研究。“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信