Unraveling the miRnome of Nicotiana rustica (Aztec tobacco) - A Genomewide computational assessment

IF 2.2 Q3 GENETICS & HEREDITY
Mansi Bhavsar , Naman Mangukia , Saumya Patel , Rakesh Rawal , Archana Mankad
{"title":"Unraveling the miRnome of Nicotiana rustica (Aztec tobacco) - A Genomewide computational assessment","authors":"Mansi Bhavsar ,&nbsp;Naman Mangukia ,&nbsp;Saumya Patel ,&nbsp;Rakesh Rawal ,&nbsp;Archana Mankad","doi":"10.1016/j.plgene.2022.100378","DOIUrl":null,"url":null,"abstract":"<div><p><span>MicroRNAs<span> (miRNAs) are endogenous small non-coding RNAs, known as chief regulators for cellular growth and development in plants. </span></span><span><em>Nicotiana rustica</em></span> (<em>N. rustica</em>), also known as Aztec tobacco is the second most widely used lucrative crop for tobacco production across the globe. Since the miRNAs of <em>Nicotiana rustica</em><span> have never been reported, we employed a genome-wide computational approach which resulted in 101 potential candidates of miRNAs, belonging to 73 families, followed by stringent filtration criteria. Statistical analysis confirmed the occurrence of uracil as the dominant initial biased nucleotide base at 5 prime ends of mature miRNAs that may lead to a significant role in miRNA biogenesis and or miRNA mediated gene regulation. Due to unavailability of target sequences, the RNAseq data of </span><em>N. rustica</em><span><span> leaf, flower, stem, and root were retrieved, assembled de novo and concatenated into a clustered customized transcript dataset. The study validates miR160, miR393, miR397, miR403 &amp; miR529 miRNAs and confirmed their targets through experimentally proven literature evidence. These miRNAs can modulate the biological role in transcription regulation, defense response, transporter activity, hormonal signaling and different </span>protein kinase activities. Collectively, this study reports putative miRNAs and their role in Aztec tobacco development and stress response.</span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407322000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

Abstract

MicroRNAs (miRNAs) are endogenous small non-coding RNAs, known as chief regulators for cellular growth and development in plants. Nicotiana rustica (N. rustica), also known as Aztec tobacco is the second most widely used lucrative crop for tobacco production across the globe. Since the miRNAs of Nicotiana rustica have never been reported, we employed a genome-wide computational approach which resulted in 101 potential candidates of miRNAs, belonging to 73 families, followed by stringent filtration criteria. Statistical analysis confirmed the occurrence of uracil as the dominant initial biased nucleotide base at 5 prime ends of mature miRNAs that may lead to a significant role in miRNA biogenesis and or miRNA mediated gene regulation. Due to unavailability of target sequences, the RNAseq data of N. rustica leaf, flower, stem, and root were retrieved, assembled de novo and concatenated into a clustered customized transcript dataset. The study validates miR160, miR393, miR397, miR403 & miR529 miRNAs and confirmed their targets through experimentally proven literature evidence. These miRNAs can modulate the biological role in transcription regulation, defense response, transporter activity, hormonal signaling and different protein kinase activities. Collectively, this study reports putative miRNAs and their role in Aztec tobacco development and stress response.

解开Nicotiana rustica(阿兹特克烟草)的基因组-全基因组计算评估
MicroRNAs (miRNAs)是一种内源性小分子非编码rna,是植物细胞生长发育的主要调控因子。烟草(N. rustica),也被称为阿兹特克烟草,是全球第二大最广泛使用的烟草生产利润作物。由于烟草的mirna从未被报道过,我们采用全基因组计算方法,得出了101个潜在的候选mirna,属于73个家族,并遵循严格的过滤标准。统计分析证实,在成熟miRNA的5′端,尿嘧啶是主要的初始偏置核苷酸碱基,这可能在miRNA的生物发生和/或miRNA介导的基因调控中起重要作用。由于目标序列不可用,我们检索了荆芥叶、花、茎和根的RNAseq数据,重新组装并连接成一个聚类定制转录本数据集。该研究验证了miR160, miR393, miR397, miR403 &miR529 mirna,并通过实验证实其靶标文献证据。这些mirna可以调节转录调控、防御反应、转运体活性、激素信号传导和不同蛋白激酶活性的生物学作用。总的来说,本研究报告了推测的mirna及其在阿兹特克烟草发育和应激反应中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信