{"title":"Evaluating Equating Methods for Varying Levels of Form Difference.","authors":"Ting Sun, Stella Yun Kim","doi":"10.1177/00131644231176989","DOIUrl":null,"url":null,"abstract":"<p><p>Equating is a statistical procedure used to adjust for the difference in form difficulty such that scores on those forms can be used and interpreted comparably. In practice, however, equating methods are often implemented without considering the extent to which two forms differ in difficulty. The study aims to examine the effect of the magnitude of a form difficulty difference on equating results under random group (RG) and common-item nonequivalent group (CINEG) designs. Specifically, this study evaluates the performance of six equating methods under a set of simulation conditions including varying levels of form difference. Results revealed that, under the RG design, mean equating was proven to be the most accurate method when there is no or small form difference, whereas equipercentile is the most accurate method when the difficulty difference is medium or large. Under the CINEG design, Tucker Linear was found to be the most accurate method when the difficulty difference is medium or small, and either chained equipercentile or frequency estimation is preferred with a large difficulty level. This study would provide practitioners with research evidence-based guidance in the choice of equating methods with varying levels of form difference. As the condition of no form difficulty difference is also included, this study would inform testing companies of appropriate equating methods when two forms are similar in difficulty level.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"510-529"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644231176989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Equating is a statistical procedure used to adjust for the difference in form difficulty such that scores on those forms can be used and interpreted comparably. In practice, however, equating methods are often implemented without considering the extent to which two forms differ in difficulty. The study aims to examine the effect of the magnitude of a form difficulty difference on equating results under random group (RG) and common-item nonequivalent group (CINEG) designs. Specifically, this study evaluates the performance of six equating methods under a set of simulation conditions including varying levels of form difference. Results revealed that, under the RG design, mean equating was proven to be the most accurate method when there is no or small form difference, whereas equipercentile is the most accurate method when the difficulty difference is medium or large. Under the CINEG design, Tucker Linear was found to be the most accurate method when the difficulty difference is medium or small, and either chained equipercentile or frequency estimation is preferred with a large difficulty level. This study would provide practitioners with research evidence-based guidance in the choice of equating methods with varying levels of form difference. As the condition of no form difficulty difference is also included, this study would inform testing companies of appropriate equating methods when two forms are similar in difficulty level.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.