Amylolytic enzymes - focus on the alpha-amylases from Archae and plants

Q4 Agricultural and Biological Sciences
Š. Janeček
{"title":"Amylolytic enzymes - focus on the alpha-amylases from Archae and plants","authors":"Š. Janeček","doi":"10.36547/nbc.1284","DOIUrl":null,"url":null,"abstract":"Amylolytic enzymes represent a group of starch hydrolases and related enzymes that are active towards the α-glycosidic bonds in starch and related poly- and oligosaccharides. The three best known amylolytic enzymes are α-amylase, β-amylase and glucoamylase that, however, differ from each other by their amino acid sequences, three-dimensional structures, reaction mechanisms and catalytic machineries. In the sequence-based classification of all glycoside hydrolases (GHs) they have therefore been classified into the three independent families: GH13 (α-amylases), GH14 (β-amylases) and GH15 (glucoamylases). Some amylolytic enzymes have been placed to the families GH31 and GH57. The family GH13 together with the families GH70 and GH77 constitutes the clan GH-H, well-known as the α-amylase family. It contains more than 6,000 sequences and covers 30 various enzyme specificities sharing the conserved sequence regions, catalytic TIM-barrel fold, retaining reaction mechanism and catalytic triad. Among the GH13 α-amylases, those produced by plants and archaebacteria exhibit common sequence similarities that distinguish them from the α-amylases of the remaining taxonomic sources. Despite the close evolutionary relatedness between the plant and archaeal α-amylases, there are also specific differences that discriminate them from each other. These specific differences could be used in an effort to reveal the sequence-structural features responsible for the high thermostability of the α-amylases from Archaea.","PeriodicalId":19210,"journal":{"name":"Nova Biotechnologica et Chimica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nova Biotechnologica et Chimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/nbc.1284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5

Abstract

Amylolytic enzymes represent a group of starch hydrolases and related enzymes that are active towards the α-glycosidic bonds in starch and related poly- and oligosaccharides. The three best known amylolytic enzymes are α-amylase, β-amylase and glucoamylase that, however, differ from each other by their amino acid sequences, three-dimensional structures, reaction mechanisms and catalytic machineries. In the sequence-based classification of all glycoside hydrolases (GHs) they have therefore been classified into the three independent families: GH13 (α-amylases), GH14 (β-amylases) and GH15 (glucoamylases). Some amylolytic enzymes have been placed to the families GH31 and GH57. The family GH13 together with the families GH70 and GH77 constitutes the clan GH-H, well-known as the α-amylase family. It contains more than 6,000 sequences and covers 30 various enzyme specificities sharing the conserved sequence regions, catalytic TIM-barrel fold, retaining reaction mechanism and catalytic triad. Among the GH13 α-amylases, those produced by plants and archaebacteria exhibit common sequence similarities that distinguish them from the α-amylases of the remaining taxonomic sources. Despite the close evolutionary relatedness between the plant and archaeal α-amylases, there are also specific differences that discriminate them from each other. These specific differences could be used in an effort to reveal the sequence-structural features responsible for the high thermostability of the α-amylases from Archaea.
淀粉酶-专注于来自古菌和植物的α淀粉酶
淀粉水解酶代表一组淀粉水解酶和相关酶,它们对淀粉和相关聚低聚糖中的α-糖苷键具有活性。三种最著名的淀粉分解酶是α-淀粉酶、β-淀粉酶和葡糖淀粉酶,但它们的氨基酸序列、三维结构、反应机制和催化机制各不相同。因此,在基于序列的所有糖苷水解酶(GHs)分类中,它们被分为三个独立的家族:GH13(α-淀粉酶)、GH14(β-淀粉酶)和GH15(葡糖淀粉酶)。一些淀粉分解酶已被归入GH31和GH57家族。家族GH13与家族GH70和GH77一起构成家族GH-H,被称为α-淀粉酶家族。它包含6000多个序列,涵盖了30种不同的酶特异性,共享保守序列区、催化TIM桶折叠、保留反应机制和催化三联体。在GH13α-淀粉酶中,由植物和古细菌产生的酶具有共同的序列相似性,这将它们与其他分类来源的α-淀粉酶区分开来。尽管植物和古菌α-淀粉酶之间有着密切的进化关系,但它们之间也存在着特定的差异。这些特定的差异可以用来揭示古菌α-淀粉酶高热稳定性的序列结构特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nova Biotechnologica et Chimica
Nova Biotechnologica et Chimica Agricultural and Biological Sciences-Food Science
CiteScore
0.60
自引率
0.00%
发文量
47
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信