{"title":"Production of monoclonal antibodies against AFLM (Ver-1), a middle key protein involved in aflatoxin biosynthesis","authors":"Ting Wang , Qi Zhang","doi":"10.1016/j.ocsci.2021.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Aflatoxins are potent carcinogens, mutagens and teratogens, and are harmful to both humans and animals. As many as 30 genes are involved in aflatoxin biosynthesis. Among them, <em>aflM</em> (<em>ver-1</em>) gene was predicted to encode a 28-kDa NADPH-dependent ketoreductase (AFLM), which catalyzed middle enzymatic steps in aflatoxin biosynthetic pathway. AFLM (Ver-1) was proved to be necessary for conversion of versicolorin A (VERA) to demethylsterigmatocystin (DMST) in aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) biosynthesis. For these reasons, <em>aflM</em> gene was cloned and specific monoclonal antibodies for AFLM was developed to better define potential pathways of AFLM involved in AFB<sub>1</sub> biosynthesis. Monoclonal antibodies 11B2-1D7 and 3G5-4E7 were successfully screened out by immunizing mouse. Immunoblot analysis revealed that both had high sensitivity and specificity to identify native AFLM protein in <em>A. flavus</em> with detection limit of 11 ng/mL and 8 ng/mL respectively. These results showed that it was suitable for quantitative detection of AFLM in <em>A. flavus</em> isolate. Further investigation revealed that aflatoxin accumulations of various <em>A. flavus</em> were not dependent on AFLM biosynthesis. Overall, this is the first report for development for AFLM monoclonal antibody development and application in <em>A. flavus</em> quantitative detection.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":"6 4","pages":"Pages 201-205"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242821000531/pdfft?md5=14c46e7206697ddc7988b6a95c5a49db&pid=1-s2.0-S2096242821000531-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil Crop Science","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096242821000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Aflatoxins are potent carcinogens, mutagens and teratogens, and are harmful to both humans and animals. As many as 30 genes are involved in aflatoxin biosynthesis. Among them, aflM (ver-1) gene was predicted to encode a 28-kDa NADPH-dependent ketoreductase (AFLM), which catalyzed middle enzymatic steps in aflatoxin biosynthetic pathway. AFLM (Ver-1) was proved to be necessary for conversion of versicolorin A (VERA) to demethylsterigmatocystin (DMST) in aflatoxin B1 (AFB1) biosynthesis. For these reasons, aflM gene was cloned and specific monoclonal antibodies for AFLM was developed to better define potential pathways of AFLM involved in AFB1 biosynthesis. Monoclonal antibodies 11B2-1D7 and 3G5-4E7 were successfully screened out by immunizing mouse. Immunoblot analysis revealed that both had high sensitivity and specificity to identify native AFLM protein in A. flavus with detection limit of 11 ng/mL and 8 ng/mL respectively. These results showed that it was suitable for quantitative detection of AFLM in A. flavus isolate. Further investigation revealed that aflatoxin accumulations of various A. flavus were not dependent on AFLM biosynthesis. Overall, this is the first report for development for AFLM monoclonal antibody development and application in A. flavus quantitative detection.