{"title":"Characterization of polyvinyl chloride–based floor covering thermal decomposition parameters in a cone calorimeter","authors":"J. Luche, T. Rogaume, É. Guillaume","doi":"10.1177/0734904120944340","DOIUrl":null,"url":null,"abstract":"In an ISO 5660 Cone Calorimeter, heat fluxes were applied to a polyvinyl chloride–based floor covering to characterize their influence on the thermal decomposition parameters as well as on the concentrations of species emitted during the combustion process. Gas concentrations were quantified for identifying the fire behaviour and the decomposition chemistry. Thus, carbon monoxide, carbon dioxide, water, hydrogen chloride and oxygen with concentrations and emission yields of high consistency were encountered at all heat fluxes considered. Moreover, nitrogen monoxide, sulphur dioxide, hydrogen cyanide and lightweight hydrocarbons were observed with low concentrations and emission yields. Other species can be considered as negligible due to their concentrations close to zero at all heat fluxes studied. Furthermore, using the oxygen consumption method, heat release rate, total heat release and effective heat of combustion were also calculated for each irradiance level and were compared with data found in the literature.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"38 1","pages":"433 - 461"},"PeriodicalIF":1.9000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904120944340","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904120944340","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In an ISO 5660 Cone Calorimeter, heat fluxes were applied to a polyvinyl chloride–based floor covering to characterize their influence on the thermal decomposition parameters as well as on the concentrations of species emitted during the combustion process. Gas concentrations were quantified for identifying the fire behaviour and the decomposition chemistry. Thus, carbon monoxide, carbon dioxide, water, hydrogen chloride and oxygen with concentrations and emission yields of high consistency were encountered at all heat fluxes considered. Moreover, nitrogen monoxide, sulphur dioxide, hydrogen cyanide and lightweight hydrocarbons were observed with low concentrations and emission yields. Other species can be considered as negligible due to their concentrations close to zero at all heat fluxes studied. Furthermore, using the oxygen consumption method, heat release rate, total heat release and effective heat of combustion were also calculated for each irradiance level and were compared with data found in the literature.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).