Limit theorems for Jacobi ensembles with large parameters

IF 0.8 Q2 MATHEMATICS
K. Hermann, M. Voit
{"title":"Limit theorems for Jacobi ensembles with large parameters","authors":"K. Hermann, M. Voit","doi":"10.2140/tunis.2021.3.843","DOIUrl":null,"url":null,"abstract":"Consider Jacobi random matrix ensembles with the distributions $$c_{k_1,k_2,k_3}\\prod_{1\\leq i -1\\leq x_1\\le ...\\le x_N\\leq 1\\}.$$ For $(k_1,k_2,k_3)=\\kappa\\cdot (a,b,1)$ with $a,b>0$ fixed, we derive a central limit theorem for the distributions above for $\\kappa\\to\\infty$. The drift and the inverse of the limit covariance matrix are expressed in terms of the zeros of classical Jacobi polynomials. We also rewrite the CLT in trigonometric form and determine the eigenvalues and eigenvectors of the limit covariance matrices. These results are related to corresponding limits for $\\beta$-Hermite and $\\beta$-Laguerre ensembles for $\\beta\\to\\infty$ by Dumitriu and Edelman and by Voit.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2021.3.843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Consider Jacobi random matrix ensembles with the distributions $$c_{k_1,k_2,k_3}\prod_{1\leq i -1\leq x_1\le ...\le x_N\leq 1\}.$$ For $(k_1,k_2,k_3)=\kappa\cdot (a,b,1)$ with $a,b>0$ fixed, we derive a central limit theorem for the distributions above for $\kappa\to\infty$. The drift and the inverse of the limit covariance matrix are expressed in terms of the zeros of classical Jacobi polynomials. We also rewrite the CLT in trigonometric form and determine the eigenvalues and eigenvectors of the limit covariance matrices. These results are related to corresponding limits for $\beta$-Hermite and $\beta$-Laguerre ensembles for $\beta\to\infty$ by Dumitriu and Edelman and by Voit.
大参数Jacobi系综的极限定理
考虑具有$$c_{k_1,k_2,k_3}\prod_{1\leq i -1\leq x_1\le ...\le x_N\leq 1\}.$$分布的Jacobi随机矩阵集合对于$a,b>0$固定的$(k_1,k_2,k_3)=\kappa\cdot (a,b,1)$,我们为$\kappa\to\infty$导出了上述分布的中心极限定理。极限协方差矩阵的漂移和逆用经典雅可比多项式的零点表示。我们还将CLT写成三角函数形式,并确定了极限协方差矩阵的特征值和特征向量。这些结果与Dumitriu和Edelman以及Voit对$\beta\to\infty$的$\beta$ -Hermite和$\beta$ -Laguerre系综的相应极限有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信