{"title":"Multifractal analysis of geodesic flows on surfaces without focal points","authors":"Kiho Park, Tianyu Wang","doi":"10.1080/14689367.2021.1978394","DOIUrl":null,"url":null,"abstract":"In this paper, we study multifractal spectra of the geodesic flows on compact rank 1 surfaces without focal points. We compute the entropy of the level sets for the Lyapunov exponents and establish a lower bound for their Hausdorff dimension in terms of the pressure function and its Legendre transform. In doing so, we employ and generalize results of Burns and Gelfert for non-positively curved surfaces and construct an increasingly nested sequence of basic sets in the complement of the singular set on which the geodesic flow is non-uniformly hyperbolic. Such a sequence of basic sets eventually contains any given basic set.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"36 1","pages":"656 - 684"},"PeriodicalIF":0.5000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2021.1978394","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study multifractal spectra of the geodesic flows on compact rank 1 surfaces without focal points. We compute the entropy of the level sets for the Lyapunov exponents and establish a lower bound for their Hausdorff dimension in terms of the pressure function and its Legendre transform. In doing so, we employ and generalize results of Burns and Gelfert for non-positively curved surfaces and construct an increasingly nested sequence of basic sets in the complement of the singular set on which the geodesic flow is non-uniformly hyperbolic. Such a sequence of basic sets eventually contains any given basic set.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences