Topological speedups of ℤd-actions

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Aimee S. A. Johnson, D. McClendon
{"title":"Topological speedups of ℤd-actions","authors":"Aimee S. A. Johnson, D. McClendon","doi":"10.1080/14689367.2022.2033166","DOIUrl":null,"url":null,"abstract":"We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"37 1","pages":"222 - 261"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2033166","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.
算子的拓扑加速
我们研究了最小-康托系统及其加速、不变Borel测度集合、相关单位维群和轨道等价类之间的关系。在最小-里程计的特殊情况下,我们证明了它们的有界加速度必须再次是里程计,但与一维情况相反,它们不必与原始情况共轭,甚至不同构。此外,我们给出了-里程表加速的例子,表明选择与加速相关的“锥”所起的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信