Topological speedups of ℤd-actions

Pub Date : 2022-02-06 DOI:10.1080/14689367.2022.2033166
Aimee S. A. Johnson, D. McClendon
{"title":"Topological speedups of ℤd-actions","authors":"Aimee S. A. Johnson, D. McClendon","doi":"10.1080/14689367.2022.2033166","DOIUrl":null,"url":null,"abstract":"We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2033166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study minimal -Cantor systems and the relationship between their speedups, their collections of invariant Borel measures, their associated unital dimension groups, and their orbit equivalence classes. In the particular case of minimal -odometers, we show that their bounded speedups must again be odometers but, contrary to the 1-dimensional case, they need not be conjugate, or even isomorphic, to the original. Furthermore, we give examples of speedups of -odometers which show the significant role played by a choice of ‘cone’ associated to the speedup.
分享
查看原文
算子的拓扑加速
我们研究了最小-康托系统及其加速、不变Borel测度集合、相关单位维群和轨道等价类之间的关系。在最小-里程计的特殊情况下,我们证明了它们的有界加速度必须再次是里程计,但与一维情况相反,它们不必与原始情况共轭,甚至不同构。此外,我们给出了-里程表加速的例子,表明选择与加速相关的“锥”所起的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信