{"title":"Neo-classical Relativistic Mechanics Theory for Electrons that Exhibits Spin, Zitterbewegung, Dipole Moments, Wavefunctions and Dirac’s Wave Equation","authors":"James L. Beck","doi":"10.1007/s10701-023-00696-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a neo-classical relativistic mechanics theory is presented where the spin of an electron is an inherent part of its world space-time path as a point particle. The fourth-order equation of motion corresponds to the same covariant Lagrangian function in proper time as in special relativity except for an additional spin energy term. The theory provides a hidden-variable model of the electron where the dynamic variables give a complete description of its motion, giving a classical mechanics explanation of the electron’s spin, its dipole moments, and Schrödinger’s zitterbewegung, These features are also described mathematically by quantum mechanics theory, of course, but without any physical picture of an underlying reality. The total motion of the electron can be decomposed into a sum of a local spin motion about a point and a global motion of this point, called here the spin center. The global motion is sub-luminal and described by Newton’s Second Law in proper time, the time for a clock fixed at the spin center, while the total motion occurs at the speed of light c, consistent with the eigenvalues of Dirac’s velocity operators having magnitude c. The local spin motion is an inherent perpetual motion, which for a free electron is periodic at the ultra-high zitterbewegung frequency and its path is circular in a spin-center reference frame. In an electro-magnetic field, this spin motion generates magnetic and electric dipole energies through the Lorentz force on the electron’s point charge. The <i>electric</i> dipole energy corresponds to the spin-orbit coupling term involving the electric field that appears in the corrected Pauli non-relativistic Hamiltonian, which has long been used to explain the doublet structure of the spectral lines of the excited hydrogen atom. Pauli’s spin-orbit term is usually derived, however, from his <i>magnetic</i> dipole energy term, including also the effect of Thomas precession, which halves this energy. The magnetic dipole energy from Pauli’s and Dirac’s theory is twice that in the neo-classical theory, a discrepancy that has not been resolved. By defining a spin tensor as the angular momentum of the electron’s total motion about its spin center, the fundamental equations of motion can be re-written in an identical form to those of the Barut–Zanghi electron theory. This allows the equations of motion to be expressed in an equivalent form involving operators applied to a state function of proper time satisfying a neo-classical Dirac–Schrödinger spinor equation. This state function produces the dynamic variables from the same operators as in Dirac’s theory for the electron but without any probability implications. It leads to a neo-classical wave function that satisfies Dirac’s relativistic wave equation for the free electron by applying the Lorentz transformation to express proper time in the state function in terms of an observer’s space-time coordinates, showing that there is a close connection between the neo-classical theory and quantum mechanics theory for the electron’s dynamics.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-023-00696-9.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00696-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, a neo-classical relativistic mechanics theory is presented where the spin of an electron is an inherent part of its world space-time path as a point particle. The fourth-order equation of motion corresponds to the same covariant Lagrangian function in proper time as in special relativity except for an additional spin energy term. The theory provides a hidden-variable model of the electron where the dynamic variables give a complete description of its motion, giving a classical mechanics explanation of the electron’s spin, its dipole moments, and Schrödinger’s zitterbewegung, These features are also described mathematically by quantum mechanics theory, of course, but without any physical picture of an underlying reality. The total motion of the electron can be decomposed into a sum of a local spin motion about a point and a global motion of this point, called here the spin center. The global motion is sub-luminal and described by Newton’s Second Law in proper time, the time for a clock fixed at the spin center, while the total motion occurs at the speed of light c, consistent with the eigenvalues of Dirac’s velocity operators having magnitude c. The local spin motion is an inherent perpetual motion, which for a free electron is periodic at the ultra-high zitterbewegung frequency and its path is circular in a spin-center reference frame. In an electro-magnetic field, this spin motion generates magnetic and electric dipole energies through the Lorentz force on the electron’s point charge. The electric dipole energy corresponds to the spin-orbit coupling term involving the electric field that appears in the corrected Pauli non-relativistic Hamiltonian, which has long been used to explain the doublet structure of the spectral lines of the excited hydrogen atom. Pauli’s spin-orbit term is usually derived, however, from his magnetic dipole energy term, including also the effect of Thomas precession, which halves this energy. The magnetic dipole energy from Pauli’s and Dirac’s theory is twice that in the neo-classical theory, a discrepancy that has not been resolved. By defining a spin tensor as the angular momentum of the electron’s total motion about its spin center, the fundamental equations of motion can be re-written in an identical form to those of the Barut–Zanghi electron theory. This allows the equations of motion to be expressed in an equivalent form involving operators applied to a state function of proper time satisfying a neo-classical Dirac–Schrödinger spinor equation. This state function produces the dynamic variables from the same operators as in Dirac’s theory for the electron but without any probability implications. It leads to a neo-classical wave function that satisfies Dirac’s relativistic wave equation for the free electron by applying the Lorentz transformation to express proper time in the state function in terms of an observer’s space-time coordinates, showing that there is a close connection between the neo-classical theory and quantum mechanics theory for the electron’s dynamics.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.