Tuning of controller parameters for suppressing low frequency oscillations in electric railway traction networks using meta-heuristic algorithms

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Prasenjit Dey, Phumin Kirawanich, Chaiyut Sumpavakup, Aniruddha Bhattacharya
{"title":"Tuning of controller parameters for suppressing low frequency oscillations in electric railway traction networks using meta-heuristic algorithms","authors":"Prasenjit Dey,&nbsp;Phumin Kirawanich,&nbsp;Chaiyut Sumpavakup,&nbsp;Aniruddha Bhattacharya","doi":"10.1049/els2.12075","DOIUrl":null,"url":null,"abstract":"<p>Due to the interaction of electric multiple units (EMUs), and the electric traction networks, low frequency oscillations (LFOs) appear leading to traction blockade and overall stability related issues. For suppressing LFOs, coronavirus herd immunity optimiser (CHIO), a recently developed meta-heuristic, has been applied for tuning controller parameters. Controller parameters are tuned to minimise the integral time absolute error (ITAE) that regulates DC-link capacitor voltage. Results obtained using CHIO are compared with those found using other well-established algorithms like symbiotic organisms search (SOS) and particle swarm optimisation (PSO). The supremacy of CHIO over other mentioned algorithms for mitigating LFOs was demonstrated for a diverse range of operating conditions. Results demonstrates that overshoot for the proposed algorithm-based traction unit is 1.0061% whereas those for SOS and PSO based algorithm are obtained as 6.4542 % and 20.6166%, respectively which are quite high. CHIO is more stable than SOS and PSO and requires settling time of 0.1934 s only to reach steady-state condition, which is 50.21% faster than SOS and 65.03% faster than PSO. Also, the total harmonic distortion (THD) for line currents of the secondary side of traction transformer (TT) are obtained as 0.88%, 2.17%, and 12.48% for CHIO, SOS, and PSO, respectively.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the interaction of electric multiple units (EMUs), and the electric traction networks, low frequency oscillations (LFOs) appear leading to traction blockade and overall stability related issues. For suppressing LFOs, coronavirus herd immunity optimiser (CHIO), a recently developed meta-heuristic, has been applied for tuning controller parameters. Controller parameters are tuned to minimise the integral time absolute error (ITAE) that regulates DC-link capacitor voltage. Results obtained using CHIO are compared with those found using other well-established algorithms like symbiotic organisms search (SOS) and particle swarm optimisation (PSO). The supremacy of CHIO over other mentioned algorithms for mitigating LFOs was demonstrated for a diverse range of operating conditions. Results demonstrates that overshoot for the proposed algorithm-based traction unit is 1.0061% whereas those for SOS and PSO based algorithm are obtained as 6.4542 % and 20.6166%, respectively which are quite high. CHIO is more stable than SOS and PSO and requires settling time of 0.1934 s only to reach steady-state condition, which is 50.21% faster than SOS and 65.03% faster than PSO. Also, the total harmonic distortion (THD) for line currents of the secondary side of traction transformer (TT) are obtained as 0.88%, 2.17%, and 12.48% for CHIO, SOS, and PSO, respectively.

Abstract Image

利用元启发式算法对电气化铁路牵引网络中抑制低频振荡的控制器参数进行整定
由于电力动车组(EMU)和电力牵引网络的相互作用,低频振荡(LFO)出现,导致牵引封锁和整体稳定性相关问题。为了抑制LFO,冠状病毒群体免疫优化器(CHIO),一种最近开发的元启发式算法,已被用于调整控制器参数。控制器参数被调谐以最小化调节DC链路电容器电压的积分时间绝对误差(ITAE)。将使用CHIO获得的结果与使用其他公认算法(如共生生物搜索(SOS)和粒子群优化(PSO))获得的结果进行比较。在不同的操作条件下,CHIO在减轻LFO方面优于其他提到的算法。结果表明,所提出的基于算法的牵引单元的超调为1.0061%,而基于SOS和PSO的算法的超调分别为6.4542%和20.6166%,这是相当高的。CHIO比SOS和PSO更稳定,只需要0.1934s的稳定时间就可以达到稳态,比SOS快50.21%,比PSO快65.03%。此外,对于CHIO、SOS和PSO,牵引变压器(TT)二次侧线路电流的总谐波失真(THD)分别为0.88%、2.17%和12.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信