Research on the influence of honeycomb cell blockage on the seal leakage characteristics

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Chunrui Liu, Ze Yan, Xuezhi Wang, Lidong He, Xingyun Jia, Wenhao Wang
{"title":"Research on the influence of honeycomb cell blockage on the seal leakage characteristics","authors":"Chunrui Liu, Ze Yan, Xuezhi Wang, Lidong He, Xingyun Jia, Wenhao Wang","doi":"10.1515/tjj-2022-0031","DOIUrl":null,"url":null,"abstract":"Abstract The accumulation of catalyst dust at the honeycomb seal for a long time will lead to the honeycomb seal cell blockage, weaken the seal effect of the honeycomb seal, and directly affect the safe and stable operation of the flue gas turbine. Therefore, a research on the influence of honeycomb cell blockage on the seal leakage characteristics is carried out. The flow field model of honeycomb seal is established, and the influence of cell blockage on the leakage characteristics of honeycomb seal is analyzed. A seal leakage characteristic experiment bench is built, and the numerical simulation results are verified by the experiment bench. Compared with the honeycomb seal without blockage, the leakage of the honeycomb seal with a blockage rate of 25% increases by about 6.5%, while the leakage of the honeycomb seal with a blockage rate of 25% obtained by the experiment increases by about 6.3%. The numerical simulation results are in good agreement with the experimental results. The results of this research provide theoretical support for revealing the seal leakage characteristics of honeycomb seals under blockage faults.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The accumulation of catalyst dust at the honeycomb seal for a long time will lead to the honeycomb seal cell blockage, weaken the seal effect of the honeycomb seal, and directly affect the safe and stable operation of the flue gas turbine. Therefore, a research on the influence of honeycomb cell blockage on the seal leakage characteristics is carried out. The flow field model of honeycomb seal is established, and the influence of cell blockage on the leakage characteristics of honeycomb seal is analyzed. A seal leakage characteristic experiment bench is built, and the numerical simulation results are verified by the experiment bench. Compared with the honeycomb seal without blockage, the leakage of the honeycomb seal with a blockage rate of 25% increases by about 6.5%, while the leakage of the honeycomb seal with a blockage rate of 25% obtained by the experiment increases by about 6.3%. The numerical simulation results are in good agreement with the experimental results. The results of this research provide theoretical support for revealing the seal leakage characteristics of honeycomb seals under blockage faults.
蜂窝室堵塞对密封泄漏特性影响的研究
摘要催化剂粉尘长期在蜂窝密封处积聚,会导致蜂窝密封槽堵塞,削弱蜂窝密封的密封效果,直接影响烟气轮机的安全稳定运行。因此,对蜂窝室堵塞对密封泄漏特性的影响进行了研究。建立了蜂窝密封的流场模型,分析了蜂窝腔堵塞对蜂窝密封泄漏特性的影响。建立了密封泄漏特性试验台,并对数值模拟结果进行了验证。与无堵塞的蜂窝密封相比,堵塞率为25%的蜂窝密封的泄漏量增加了约6.5%,而实验得到的堵塞率为25%的蜂窝密封的泄漏量增加了约6.3%。数值模拟结果与实验结果吻合较好。研究结果为揭示阻塞断层作用下蜂窝密封泄漏特性提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信