From compressible to incompressible inhomogeneous flows in the case of large data

IF 0.8 Q2 MATHEMATICS
R. Danchin, P. Mucha
{"title":"From compressible to incompressible inhomogeneous flows in the case of large data","authors":"R. Danchin, P. Mucha","doi":"10.2140/tunis.2019.1.127","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the mathematical derivation of the inhomoge-neous incompressible Navier-Stokes equations (INS) from the compressible Navier-Stokes equations (CNS) in the large volume viscosity limit. We first prove a result of large time existence of regular solutions for (CNS). Next, as a consequence, we establish that the solutions of (CNS) converge to those of (INS) when the volume viscosity tends to infinity. Analysis is performed in the two dimensional torus, for general initial data. In particular, we are able to handle large variations of density.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2019.1.127","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2019.1.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

This paper is concerned with the mathematical derivation of the inhomoge-neous incompressible Navier-Stokes equations (INS) from the compressible Navier-Stokes equations (CNS) in the large volume viscosity limit. We first prove a result of large time existence of regular solutions for (CNS). Next, as a consequence, we establish that the solutions of (CNS) converge to those of (INS) when the volume viscosity tends to infinity. Analysis is performed in the two dimensional torus, for general initial data. In particular, we are able to handle large variations of density.
在大数据的情况下,从可压缩到不可压缩非均匀流
本文从大体积黏度极限下的可压缩Navier-Stokes方程出发,研究了非齐次不可压缩Navier-Stokes方程的数学推导。首先证明了(CNS)正则解的大时间存在性。因此,当体积黏度趋于无穷大时,(CNS)的解收敛于(INS)的解。对于一般初始数据,在二维环面中进行分析。特别是,我们能够处理密度的大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信