Electrochemical process for petroleum refinery wastewater treatment to produce power and hydrogen using microbial electrolysis cell

IF 3 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Anwar Ahmad, Alaya Said Senaidi, Sajjala Sreedhar Reddy
{"title":"Electrochemical process for petroleum refinery wastewater treatment to produce power and hydrogen using microbial electrolysis cell","authors":"Anwar Ahmad,&nbsp;Alaya Said Senaidi,&nbsp;Sajjala Sreedhar Reddy","doi":"10.1007/s40201-023-00874-x","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to assess the microbial electrolysis cell (MEC) fed with petroleum refinery wastewater (PRW) to produce power density and bio-electrochemical hydrogen. The MEC produces a maximum bio-electricity of 21.4 mA and a power density of 1200123.90 W/m<sup>2</sup> with a loading of chemical oxygen demand (COD) of 17000 mg/L. Due to catalyzed oxidation of complex compounds in PRW with a maintained microbial biofilm growth was observed after 90 d of operation of MEC. Results showed that the oxidation of organic substances in PRW enhanced the size in the growth of microbial film which further increased the generation of electrons leading to current density of 5890 mA/m<sup>2</sup>. The COD removal efficiency of MEC was found to be 89.9%. The bio-electricity and hydrogen production of the MEC was estimated to be 24.5 mA and 19.2 L respectively when loaded with PRW having a COD of 17500 mg/L after 130 d. Present experiments demonstrate the efficiency of MEC technology efficiency in treating petroleum wastewater with the help of microbial biofilm.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-023-00874-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00874-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to assess the microbial electrolysis cell (MEC) fed with petroleum refinery wastewater (PRW) to produce power density and bio-electrochemical hydrogen. The MEC produces a maximum bio-electricity of 21.4 mA and a power density of 1200123.90 W/m2 with a loading of chemical oxygen demand (COD) of 17000 mg/L. Due to catalyzed oxidation of complex compounds in PRW with a maintained microbial biofilm growth was observed after 90 d of operation of MEC. Results showed that the oxidation of organic substances in PRW enhanced the size in the growth of microbial film which further increased the generation of electrons leading to current density of 5890 mA/m2. The COD removal efficiency of MEC was found to be 89.9%. The bio-electricity and hydrogen production of the MEC was estimated to be 24.5 mA and 19.2 L respectively when loaded with PRW having a COD of 17500 mg/L after 130 d. Present experiments demonstrate the efficiency of MEC technology efficiency in treating petroleum wastewater with the help of microbial biofilm.

Abstract Image

利用微生物电解池处理石油炼化废水产生电能和氢气的电化学过程
本研究旨在评估用炼油废水(PRW)生产功率密度和生物电化学氢气的微生物电解池(MEC)。MEC在化学需氧量(COD)负荷为17000mg/L的情况下产生21.4mA的最大生物电和1200123.90W/m2的功率密度。由于PRW中复杂化合物的催化氧化,在MEC操作90天后观察到微生物生物膜的生长。结果表明,PRW中有机物质的氧化增强了微生物膜生长中的尺寸,进一步增加了电子的产生,导致电流密度达到5890mA/m2。MEC的COD去除率为89.9%。在130天后,当负载COD为17500mg/L的PRW时,MEC的生物发电量和产氢量分别为24.5mA和19.2L。目前的实验证明了MEC技术在微生物生物膜的帮助下处理石油废水的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Health Science and Engineering
Journal of Environmental Health Science and Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
7.50
自引率
2.90%
发文量
81
期刊介绍: Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management. A broad outline of the journal''s scope includes: -Water pollution and treatment -Wastewater treatment and reuse -Air control -Soil remediation -Noise and radiation control -Environmental biotechnology and nanotechnology -Food safety and hygiene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信