{"title":"Drought Severity and Trends in a Mediterranean Oak Forest","authors":"S. Stefanidis, Dimitra Rossiou, N. Proutsos","doi":"10.3390/hydrology10080167","DOIUrl":null,"url":null,"abstract":"Drought is a significant natural hazard with widespread socioeconomic and environmental impacts. This study investigated the long-term drought characteristics in a Mediterranean oak forest ecosystem using the Standardized Precipitation Evapotranspiration Index (SPEI) at various time scales and seasons. The analysis was based on a long-term time series dataset obtained from a meteorological station located at the University Forest of Taxiarchis in Greece. The dataset encompassed a substantial time span of 47 years of continuous monitoring, from 1974 to 2020. To accomplish the goals of the current research, the SPEI was calculated for 3, 6, 12, and 24-month periods, and drought events were identified. The Mann-Kendall (M-K) test was used to analyze the trends in drought severity and evaluate the trends significance. The results showed that shorter time scales (SPEI3 and SPEI6) were more efficient for identifying short-term droughts, while longer time scales (SPEI12 and SPEI24) were better for identifying less frequent but longer-lasting drought episodes. The analysis consistently revealed positive trends across all seasons and time scales, indicating an overall transition towards wetter conditions. Nearly all the data series for SPEI12 and SPEI24 exhibited statistically significant upward trends (wetter conditions) at a 95% confidence level. However, more intense events were detected during the recent decade using the seasonal analysis. Additionally, as the time scale expanded, the magnitude of these trends increased. The findings contributed to a better understanding of drought dynamics in Mediterranean oak forests and provided valuable information for forest management and climate change adaptation planning.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10080167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 3
Abstract
Drought is a significant natural hazard with widespread socioeconomic and environmental impacts. This study investigated the long-term drought characteristics in a Mediterranean oak forest ecosystem using the Standardized Precipitation Evapotranspiration Index (SPEI) at various time scales and seasons. The analysis was based on a long-term time series dataset obtained from a meteorological station located at the University Forest of Taxiarchis in Greece. The dataset encompassed a substantial time span of 47 years of continuous monitoring, from 1974 to 2020. To accomplish the goals of the current research, the SPEI was calculated for 3, 6, 12, and 24-month periods, and drought events were identified. The Mann-Kendall (M-K) test was used to analyze the trends in drought severity and evaluate the trends significance. The results showed that shorter time scales (SPEI3 and SPEI6) were more efficient for identifying short-term droughts, while longer time scales (SPEI12 and SPEI24) were better for identifying less frequent but longer-lasting drought episodes. The analysis consistently revealed positive trends across all seasons and time scales, indicating an overall transition towards wetter conditions. Nearly all the data series for SPEI12 and SPEI24 exhibited statistically significant upward trends (wetter conditions) at a 95% confidence level. However, more intense events were detected during the recent decade using the seasonal analysis. Additionally, as the time scale expanded, the magnitude of these trends increased. The findings contributed to a better understanding of drought dynamics in Mediterranean oak forests and provided valuable information for forest management and climate change adaptation planning.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.