Three new copper-lead selenite bromides obtained by chemical vapor transport: Pb5Cu+4(SeO3)4Br6, Pb8Cu2+(SeO3)4Br10, and the synthetic analogue of the mineral sarrabusite, Pb5Cu2+(SeO3)4(Br,Cl)4
Oleg I. Siidra, Vasili Yu. Grishaev, Evgeni V. Nazarchuk, Roman A. Kayukov
{"title":"Three new copper-lead selenite bromides obtained by chemical vapor transport: Pb5Cu+4(SeO3)4Br6, Pb8Cu2+(SeO3)4Br10, and the synthetic analogue of the mineral sarrabusite, Pb5Cu2+(SeO3)4(Br,Cl)4","authors":"Oleg I. Siidra, Vasili Yu. Grishaev, Evgeni V. Nazarchuk, Roman A. Kayukov","doi":"10.1007/s00710-023-00825-2","DOIUrl":null,"url":null,"abstract":"<div><p>Three new copper-lead selenite bromides were synthesized by chemical vapor transport reactions. Pb<sub>5</sub>Cu<sup>+</sup><sub>4</sub>(SeO<sub>3</sub>)<sub>4</sub>Br<sub>6</sub> is monoclinic, space group <i>C</i>2/<i>m</i>, <i>a</i> = 17.7248(14), <i>b</i> = 5.5484(5), <i>c</i> = 12.7010(10) Å, β = 103.398(2)º, <i>V</i> = 1215.08(17) Å<sup>3</sup>, <i>R</i><sub>1</sub> = 0.024; Pb<sub>8</sub>Cu<sup>2+</sup>(SeO<sub>3</sub>)<sub>4</sub>Br<sub>10</sub> is orthorhombic, space group <i>I</i>222, <i>a</i> = 9.5893(5), <i>b</i> = 12.4484(9), <i>c</i> = 12.7927(6) Å, <i>V</i> = 1527.08(15) Å<sup>3</sup>, <i>R</i><sub>1</sub> = 0.027; Pb<sub>5</sub>Cu<sup>2+</sup>(SeO<sub>3</sub>)<sub>4</sub>(Br,Cl)<sub>4</sub> is monoclinic, <i>C</i>2/<i>c</i>, <i>a</i> = 24.590(6) Å, <i>b</i> = 5.5786(14) Å, <i>c</i> = 14.248(4) Å, β = 102.883(7)º, <i>V</i> = 1905.3(9) Å<sup>3</sup>, <i>R</i><sub>1</sub> = 0.026. The crystal structure of Pb<sub>5</sub>Cu<sup>+</sup><sub>4</sub>(SeO<sub>3</sub>)<sub>4</sub>Br<sub>6</sub> consists of two distinct parts: corner- and edge-sharing Cu<sup>+</sup>Br<sub>4</sub> tetrahedra form infinite [Cu<sup>+</sup><sub>4</sub>Br<sub>6</sub>]<sup>2-</sup> layers which alternate with [Pb<sub>5</sub>(SeO<sub>3</sub>)<sub>4</sub>]<sup>2+</sup> layers. Pb<sub>8</sub>Cu<sup>2+</sup>(SeO<sub>3</sub>)<sub>4</sub>Br<sub>10</sub> contains positively charged unique [Pb<sub>8</sub>Cu<sup>2+</sup>(SeO<sub>3</sub>)<sub>4</sub>]<sup>10+</sup> rod-like chains with Cu<sup>2+</sup> cations in the core. These chains are held together by Br<sup>-</sup> anions. Pb<sub>5</sub>Cu<sup>+</sup><sub>4</sub>(SeO<sub>3</sub>)<sub>4</sub>Br<sub>6</sub> and Pb<sub>8</sub>Cu<sup>2+</sup>(SeO<sub>3</sub>)<sub>4</sub>Br<sub>10</sub> belong to new structure types. Pb<sub>5</sub>Cu<sup>2+</sup>(SeO<sub>3</sub>)<sub>4</sub>(Br,Cl)<sub>4</sub> is a synthetic analogue of the mineral sarrabusite, Pb<sub>5</sub>Cu(SeO<sub>3</sub>)<sub>4</sub>Cl<sub>4</sub>, previously known from an electron diffraction study. The investigation of this synthetic equivalent of sarrabusite by conventional single-crystal X-ray diffraction provides a distinctly improved insight in this crystal structure. Cu atom has well-defined [2O+(2O+2<i>X</i>)] (<i>X</i> = halogen) distorted octahedral coordination. PbO<sub><i>n</i></sub> and SeO<sub>3</sub> polyhedra interconnect via common oxygen atoms into [Pb<sub>5</sub>(SeO<sub>3</sub>)<sub>4</sub>]<sup>2+</sup> layers parallel to (001). Cu<sup>2+</sup> cations interconnect the layers into the framework with the large cavities filled by halide <i>X</i> anions. In all three new compounds described, a common feature is the formation of the selenophile substructure which is terminated by a ‘lone-pair’ shell that faces bromide complexes thus forming the surface of a halophile substructure.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":"117 2","pages":"281 - 291"},"PeriodicalIF":1.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-023-00825-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Three new copper-lead selenite bromides were synthesized by chemical vapor transport reactions. Pb5Cu+4(SeO3)4Br6 is monoclinic, space group C2/m, a = 17.7248(14), b = 5.5484(5), c = 12.7010(10) Å, β = 103.398(2)º, V = 1215.08(17) Å3, R1 = 0.024; Pb8Cu2+(SeO3)4Br10 is orthorhombic, space group I222, a = 9.5893(5), b = 12.4484(9), c = 12.7927(6) Å, V = 1527.08(15) Å3, R1 = 0.027; Pb5Cu2+(SeO3)4(Br,Cl)4 is monoclinic, C2/c, a = 24.590(6) Å, b = 5.5786(14) Å, c = 14.248(4) Å, β = 102.883(7)º, V = 1905.3(9) Å3, R1 = 0.026. The crystal structure of Pb5Cu+4(SeO3)4Br6 consists of two distinct parts: corner- and edge-sharing Cu+Br4 tetrahedra form infinite [Cu+4Br6]2- layers which alternate with [Pb5(SeO3)4]2+ layers. Pb8Cu2+(SeO3)4Br10 contains positively charged unique [Pb8Cu2+(SeO3)4]10+ rod-like chains with Cu2+ cations in the core. These chains are held together by Br- anions. Pb5Cu+4(SeO3)4Br6 and Pb8Cu2+(SeO3)4Br10 belong to new structure types. Pb5Cu2+(SeO3)4(Br,Cl)4 is a synthetic analogue of the mineral sarrabusite, Pb5Cu(SeO3)4Cl4, previously known from an electron diffraction study. The investigation of this synthetic equivalent of sarrabusite by conventional single-crystal X-ray diffraction provides a distinctly improved insight in this crystal structure. Cu atom has well-defined [2O+(2O+2X)] (X = halogen) distorted octahedral coordination. PbOn and SeO3 polyhedra interconnect via common oxygen atoms into [Pb5(SeO3)4]2+ layers parallel to (001). Cu2+ cations interconnect the layers into the framework with the large cavities filled by halide X anions. In all three new compounds described, a common feature is the formation of the selenophile substructure which is terminated by a ‘lone-pair’ shell that faces bromide complexes thus forming the surface of a halophile substructure.
期刊介绍:
Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered.
Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.