Asep Sugih Nugraha , Minsu Han , Aditya Ashok , Yunqing Kang , Jeonghun Kim , Saad M. Alshehri , Tansir Ahamad , Yoshio Bando , Yusuke Yamauchi
{"title":"Synergistic mesoporous bimetallic gold-silver nanoparticles: Synthesis, structure, and superior electrocatalytic activity","authors":"Asep Sugih Nugraha , Minsu Han , Aditya Ashok , Yunqing Kang , Jeonghun Kim , Saad M. Alshehri , Tansir Ahamad , Yoshio Bando , Yusuke Yamauchi","doi":"10.1016/j.nanoen.2023.108770","DOIUrl":null,"url":null,"abstract":"<div><p><span>Mesoporous bimetallic nanoparticles have gained immense interest due to their unique properties and applications in various fields. In this study, we report a novel and straightforward one-pot chemical reduction method for the synthesis of mesoporous AuAg nanoparticles, featuring a substantial mesopore size (>10 nm) and a well-defined structure. The synthetic route involves employing </span><span>L</span><span>-cysteine as a ligand to form thiolate-metal(I) complexes and co-reduction of metal precursors<span><span> around sacrificial templates of polymeric micelles<span>. The resulting nanoparticles exhibit remarkable uniformity in size and possess a well-ordered mesoporous structure. Structural analyses confirm the formation of an alloy system containing Au and Ag without any distinct phases. By adjusting the initial precursor composition, precise control over the Au:Ag ratios in the final products is achievable. The </span></span>electrocatalytic activity<span> of mesoporous AuAg nanoparticles in the electrooxidation of small molecules surpasses that of mesoporous Au nanoparticles, owing to the synergistic effect arising from both the alterations in the electronic structure and the benefits offered by the porous architecture. This synthetic approach provides a promising avenue for developing efficient and cost-effective mesoporous Au-based nanoparticles for a diverse range of applications.</span></span></span></p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"116 ","pages":"Article 108770"},"PeriodicalIF":17.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285523006079","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Mesoporous bimetallic nanoparticles have gained immense interest due to their unique properties and applications in various fields. In this study, we report a novel and straightforward one-pot chemical reduction method for the synthesis of mesoporous AuAg nanoparticles, featuring a substantial mesopore size (>10 nm) and a well-defined structure. The synthetic route involves employing L-cysteine as a ligand to form thiolate-metal(I) complexes and co-reduction of metal precursors around sacrificial templates of polymeric micelles. The resulting nanoparticles exhibit remarkable uniformity in size and possess a well-ordered mesoporous structure. Structural analyses confirm the formation of an alloy system containing Au and Ag without any distinct phases. By adjusting the initial precursor composition, precise control over the Au:Ag ratios in the final products is achievable. The electrocatalytic activity of mesoporous AuAg nanoparticles in the electrooxidation of small molecules surpasses that of mesoporous Au nanoparticles, owing to the synergistic effect arising from both the alterations in the electronic structure and the benefits offered by the porous architecture. This synthetic approach provides a promising avenue for developing efficient and cost-effective mesoporous Au-based nanoparticles for a diverse range of applications.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.