Wen-zhuo Wang , Zeng-chuan Dong , Tian-yan Zhang , Li Ren , Lian-qing Xue , Teng Wu
{"title":"Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation","authors":"Wen-zhuo Wang , Zeng-chuan Dong , Tian-yan Zhang , Li Ren , Lian-qing Xue , Teng Wu","doi":"10.1016/j.wse.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Copula functions have been widely used in stochastic simulation and prediction of streamflow. However, existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months. To address this limitation, this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations. This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas. The up-to-down sequential method, which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach, was used to determine the structures of multivariate D-vine copulas. The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station, the inflow control station of the Longyangxia Reservoir in the Yellow River Basin. The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow. This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 1","pages":"Pages 13-20"},"PeriodicalIF":3.7000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000595/pdfft?md5=cda2e1d3cd1a9580d3a6f56082e483f5&pid=1-s2.0-S1674237023000595-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023000595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Copula functions have been widely used in stochastic simulation and prediction of streamflow. However, existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months. To address this limitation, this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations. This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas. The up-to-down sequential method, which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach, was used to determine the structures of multivariate D-vine copulas. The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station, the inflow control station of the Longyangxia Reservoir in the Yellow River Basin. The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow. This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.