Lateral Interaction of Cylindrical Transmembrane Peptides in a One-Dimensional Approximation

IF 1.1 Q4 CELL BIOLOGY
O. V. Kondrashov, S. A. Akimov
{"title":"Lateral Interaction of Cylindrical Transmembrane Peptides in a One-Dimensional Approximation","authors":"O. V. Kondrashov,&nbsp;S. A. Akimov","doi":"10.1134/S1990747822030060","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>Various membrane inclusions can induce deformations of lipid bilayer membranes. The characteristic length of deformation propagation along the membrane is about several nanometers. Overlapping of deformations induced by different membrane inclusions leads to their effective lateral interaction. The interaction energy can be calculated within the framework of an adequate theory of elasticity. However, in practice, such a calculation can be carried out in an analytical form only for effectively one-dimensional systems, for example, those with translational or rotational symmetry. In the general case of systems with low symmetry, the problem cannot be solved analytically. We theoretically considered the interaction of two cylindrical transmembrane peptides mediated by membrane deformations. The interaction energies were obtained by numerical minimization of the elastic energy functional. In addition, we calculated the interaction energies in a one-dimensional approximation, assuming that the system possesses the translational symmetry. It was shown that the one-dimensional approximation quite well reproduces the results of exact numerical calculations in lipid bilayers of various thicknesses and rigidities.</p></div></div>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"16 2","pages":"127 - 134"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747822030060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Various membrane inclusions can induce deformations of lipid bilayer membranes. The characteristic length of deformation propagation along the membrane is about several nanometers. Overlapping of deformations induced by different membrane inclusions leads to their effective lateral interaction. The interaction energy can be calculated within the framework of an adequate theory of elasticity. However, in practice, such a calculation can be carried out in an analytical form only for effectively one-dimensional systems, for example, those with translational or rotational symmetry. In the general case of systems with low symmetry, the problem cannot be solved analytically. We theoretically considered the interaction of two cylindrical transmembrane peptides mediated by membrane deformations. The interaction energies were obtained by numerical minimization of the elastic energy functional. In addition, we calculated the interaction energies in a one-dimensional approximation, assuming that the system possesses the translational symmetry. It was shown that the one-dimensional approximation quite well reproduces the results of exact numerical calculations in lipid bilayers of various thicknesses and rigidities.

Abstract Image

一维近似下圆柱形跨膜肽的横向相互作用
摘要/ abstract摘要:各种膜内含物可引起脂质双分子层膜的变形。变形沿膜传播的特征长度约为几纳米。不同膜内含物引起的变形重叠导致它们有效的横向相互作用。相互作用能可以在适当的弹性理论框架内计算。然而,在实践中,这样的计算只能在有效的一维系统中以解析形式进行,例如,那些具有平移或旋转对称性的系统。在低对称性系统的一般情况下,这个问题不能解析解决。我们从理论上考虑了膜变形介导的两个圆柱形跨膜肽的相互作用。通过弹性能量泛函的数值最小化得到了相互作用能。此外,假设系统具有平移对称性,我们在一维近似下计算了相互作用能量。结果表明,一维近似很好地再现了不同厚度和刚度的脂质双层的精确数值计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信