New Quantum Codes Derived from Group Rings

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Cong Yu, Shixin Zhu
{"title":"New Quantum Codes Derived from Group Rings","authors":"Cong Yu,&nbsp;Shixin Zhu","doi":"10.1007/s10773-023-05385-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we use the principal ideals of group rings to construct quantum codes. We use multivariate polynomial rings to represent group rings and use multivariate polynomials to represent codewords. We give a condition for multivariate polynomials such that they generate Hermitian dual-containing codes. We also find that the minimum distance of the code which is generated by a multivariate polynomial is related to the zeros distribution of the multivariate polynomial. After computer search and calculation, we get many quantum codes with good parameters over small finite fields.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10773-023-05385-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05385-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we use the principal ideals of group rings to construct quantum codes. We use multivariate polynomial rings to represent group rings and use multivariate polynomials to represent codewords. We give a condition for multivariate polynomials such that they generate Hermitian dual-containing codes. We also find that the minimum distance of the code which is generated by a multivariate polynomial is related to the zeros distribution of the multivariate polynomial. After computer search and calculation, we get many quantum codes with good parameters over small finite fields.

群环衍生的新量子密码
本文利用群环的主理想构造量子码。我们用多元多项式环表示群环,用多元多项式表示码字。我们给出了多元多项式产生厄密双含码的一个条件。我们还发现由多元多项式生成的码的最小距离与多元多项式的零分布有关。经过计算机搜索和计算,我们得到了许多在小的有限域中具有良好参数的量子码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信