A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang
{"title":"A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity","authors":"Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang","doi":"10.1515/ijnsns-2021-0388","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a linearized finite difference scheme for solving a kind of time-space fractional nonlinear diffusion-wave equations with initial singularity, where the Caputo fractional derivative in time and the Riesz fractional derivative in space are involved. First, the considered problem is equivalently transformed into its partial integro-differential form. Then, the fully discrete scheme is constructed by using the Crank–Nicolson technique, the L1 approximation, and the convolution quadrature formula to deal with the temporal discretizations. Meanwhile, the classical central difference formula and the fractional central difference formula are applied to approximate the second-order derivative and the Riesz fractional derivative in space, respectively. Moreover, the stability and convergence of the proposed scheme are strictly proved by using the discrete energy method. Finally, some numerical experiments are presented to illustrate the theoretical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper presents a linearized finite difference scheme for solving a kind of time-space fractional nonlinear diffusion-wave equations with initial singularity, where the Caputo fractional derivative in time and the Riesz fractional derivative in space are involved. First, the considered problem is equivalently transformed into its partial integro-differential form. Then, the fully discrete scheme is constructed by using the Crank–Nicolson technique, the L1 approximation, and the convolution quadrature formula to deal with the temporal discretizations. Meanwhile, the classical central difference formula and the fractional central difference formula are applied to approximate the second-order derivative and the Riesz fractional derivative in space, respectively. Moreover, the stability and convergence of the proposed scheme are strictly proved by using the discrete energy method. Finally, some numerical experiments are presented to illustrate the theoretical results.
具有初始奇异性的时空分数阶非线性扩散波方程的线性化有限差分格式
摘要本文给出了一类具有初始奇异性的时空分数阶非线性扩散波方程的线性化有限差分格式,其中包括时间上的Caputo分数阶导数和空间上的Riesz分数阶导数。首先,将所考虑的问题等价地转化为其偏积分-微分形式。然后,使用Crank–Nicolson技术、L1近似和卷积求积公式构造了全离散格式来处理时间离散化。同时,将经典中心差分公式和分数中心差分方程分别应用于空间中的二阶导数和Riesz分数导数的近似。此外,利用离散能量法严格证明了该方案的稳定性和收敛性。最后,通过数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信