Comparative Study of Soft Template on Gunningite Synthesis for Ibuprofen Adsorption Application

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
M. Ulfa, Windi Apriliani
{"title":"Comparative Study of Soft Template on Gunningite Synthesis for Ibuprofen Adsorption Application","authors":"M. Ulfa, Windi Apriliani","doi":"10.22146/ijc.79098","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the effect of soft template variations on Zinc Sulfate Hydrate (Gunningite) synthesis and the maximum adsorption capacity of ibuprofen. This study employed the soft template method and hydrothermal at 100 °C, followed by calcination at 550 °C. Here, ZnSO4 heptahydrate was used as the precursor for different templates. XRD analysis exhibited that the crystal sizes of Gunningite-F127G, Gunningite-F127, Gunningite-P123G, Gunningite-P123, and Gunningite-G were 18.35; 25.33; 25.67; 27.30; and 24.24 nm with crystallinity degrees of 36.89; 42.62; 46.83; 41.27; and 40.62%, respectively. FTIR examination indicated that the five samples contained functional groups of OH stretching at 3170 cm–1, Zn-O-Zn at 1637 cm–1, Zn-S=O symmetric and asymmetric at 900 and 1056 cm–1, and Zn-O at 521 cm–1. Furthermore, SEM-EDX investigation revealed that the morphology of all Gunningite samples was inhomogeneous due to agglomeration. Besides that, the elemental compositions in the samples were dominated by Zn and O elements. The maximum adsorption capacity obtained from each sample was 221.1 mg/g (Gunningite-F127G); 226.06 mg/g (Gunningite-F127); 234.23 mg/g (Gunningite-P123G); 229.76 mg/g (Gunningite-P123); and 222.85 mg/g (Gunningite-G). Moreover, the Gunningite kinetic model of ibuprofen adsorption followed Ho and McKay's pseudo-second-order kinetic model.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.79098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the effect of soft template variations on Zinc Sulfate Hydrate (Gunningite) synthesis and the maximum adsorption capacity of ibuprofen. This study employed the soft template method and hydrothermal at 100 °C, followed by calcination at 550 °C. Here, ZnSO4 heptahydrate was used as the precursor for different templates. XRD analysis exhibited that the crystal sizes of Gunningite-F127G, Gunningite-F127, Gunningite-P123G, Gunningite-P123, and Gunningite-G were 18.35; 25.33; 25.67; 27.30; and 24.24 nm with crystallinity degrees of 36.89; 42.62; 46.83; 41.27; and 40.62%, respectively. FTIR examination indicated that the five samples contained functional groups of OH stretching at 3170 cm–1, Zn-O-Zn at 1637 cm–1, Zn-S=O symmetric and asymmetric at 900 and 1056 cm–1, and Zn-O at 521 cm–1. Furthermore, SEM-EDX investigation revealed that the morphology of all Gunningite samples was inhomogeneous due to agglomeration. Besides that, the elemental compositions in the samples were dominated by Zn and O elements. The maximum adsorption capacity obtained from each sample was 221.1 mg/g (Gunningite-F127G); 226.06 mg/g (Gunningite-F127); 234.23 mg/g (Gunningite-P123G); 229.76 mg/g (Gunningite-P123); and 222.85 mg/g (Gunningite-G). Moreover, the Gunningite kinetic model of ibuprofen adsorption followed Ho and McKay's pseudo-second-order kinetic model.
软模板法合成甘宁矿吸附布洛芬的比较研究
本研究旨在探讨软模板的变化对硫酸锌水合物(Gunningite)合成及布洛芬最大吸附量的影响。本研究采用软模板法,100℃水热,550℃煅烧。在这里,七水硫酸锌被用作不同模板的前驱体。XRD分析表明,Gunningite-F127G、Gunningite-F127、Gunningite-P123G、Gunningite-P123、Gunningite-G的晶粒尺寸为18.35;25.33;25.67;27.30;24.24 nm,结晶度36.89;42.62;46.83;41.27;分别为40.62%。FTIR检测结果表明,5种样品均含有3170 cm-1的OH、1637 cm-1的Zn-O- zn、900 cm-1和1056 cm-1的Zn-S=O对称和不对称官能团以及521 cm-1的Zn-O官能团。此外,SEM-EDX研究表明,所有Gunningite样品由于团聚而形貌不均匀。此外,样品中的元素组成以Zn和O元素为主。各样品的最大吸附量为221.1 mg/g (Gunningite-F127G);226.06 mg/g (Gunningite-F127);234.23 mg/g (Gunningite-P123G);229.76 mg/g (Gunningite-P123);222.85 mg/g (Gunningite-G)。同时,Gunningite吸附布洛芬的动力学模型符合Ho和McKay的拟二级动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信