{"title":"N-Terminal Fragment of Vimentin Is Responsible for Binding of Mitochondria In Vitro","authors":"A. A. Dayal, N. V. Medvedeva, A. A. Minin","doi":"10.1134/S1990747822030059","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>The role of intermediate filaments in the regulation of mitochondrial functions has become evident from recent studies. For example, vimentin has been shown to affect mitochondrial motility and the level of their membrane potential. However, the mechanism of their interaction is still largely unexplored. In particular, it is unknown whether vimentin can bind directly to mitochondria or whether any intermediate proteins are needed. In this study, using bioinformatics tools, we show that the vimentin sequence has a region in the N-terminal domain, which can play the role of a mitochondrial targeting peptide that probably directs vimentin to mitochondria and causes its binding with these organelles. In order to test this possibility, the binding of mitochondria isolated from rat liver with protofilaments formed by human recombinant vimentin was investigated using centrifugation through sucrose “cushion”. We demonstrate that vimentin can bind to mitochondria in vitro. We also show that the action of a mitochondrial protease leads to the loss of the N-terminal part of the vimentin molecule and its interaction with mitochondria is disrupted. Inhibitory analysis revealed that the atypical calpain, a cysteine Ca<sup>2+</sup>-dependent protease that is insensitive to the inhibitor calpastatin, is responsible for its degradation.</p></div></div>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"16 2","pages":"151 - 157"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747822030059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract—
The role of intermediate filaments in the regulation of mitochondrial functions has become evident from recent studies. For example, vimentin has been shown to affect mitochondrial motility and the level of their membrane potential. However, the mechanism of their interaction is still largely unexplored. In particular, it is unknown whether vimentin can bind directly to mitochondria or whether any intermediate proteins are needed. In this study, using bioinformatics tools, we show that the vimentin sequence has a region in the N-terminal domain, which can play the role of a mitochondrial targeting peptide that probably directs vimentin to mitochondria and causes its binding with these organelles. In order to test this possibility, the binding of mitochondria isolated from rat liver with protofilaments formed by human recombinant vimentin was investigated using centrifugation through sucrose “cushion”. We demonstrate that vimentin can bind to mitochondria in vitro. We also show that the action of a mitochondrial protease leads to the loss of the N-terminal part of the vimentin molecule and its interaction with mitochondria is disrupted. Inhibitory analysis revealed that the atypical calpain, a cysteine Ca2+-dependent protease that is insensitive to the inhibitor calpastatin, is responsible for its degradation.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.