{"title":"Improved Well-Posedness for the Triple-Deck and Related Models via Concavity","authors":"David Gerard-Varet, Sameer Iyer, Yasunori Maekawa","doi":"10.1007/s00021-023-00809-4","DOIUrl":null,"url":null,"abstract":"<div><p>We establish linearized well-posedness of the Triple-Deck system in Gevrey-<span>\\(\\frac{3}{2}\\)</span> regularity in the tangential variable, under concavity assumptions on the background flow. Due to the recent result (Dietert and Gerard-Varet in SIAM J Math Anal, 2021), one cannot expect a generic improvement of the result of Iyer and Vicol (Commun Pure Appl Math 74(8):1641–1684, 2021) to a weaker regularity class than real analyticity. Our approach exploits two ingredients, through an analysis of space-time modes on the Fourier–Laplace side: (i) stability estimates at the vorticity level, that involve the concavity assumption and a subtle iterative scheme adapted from Gerard-Varet et al. (Optimal Prandtl expansion around concave boundary layer, 2020. arXiv:2005.05022) (ii) smoothing properties of the Benjamin–Ono like equation satisfied by the Triple-Deck flow at infinity. Interestingly, our treatment of the vorticity equation also adapts to the so-called hydrostatic Navier–Stokes equations: we show for this system a similar Gevrey-<span>\\(\\frac{3}{2}\\)</span> linear well-posedness result for concave data, improving at the linear level the recent work (Gérard-Varet et al. in Anal PDE 13(5):1417–1455, 2020).\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00809-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We establish linearized well-posedness of the Triple-Deck system in Gevrey-\(\frac{3}{2}\) regularity in the tangential variable, under concavity assumptions on the background flow. Due to the recent result (Dietert and Gerard-Varet in SIAM J Math Anal, 2021), one cannot expect a generic improvement of the result of Iyer and Vicol (Commun Pure Appl Math 74(8):1641–1684, 2021) to a weaker regularity class than real analyticity. Our approach exploits two ingredients, through an analysis of space-time modes on the Fourier–Laplace side: (i) stability estimates at the vorticity level, that involve the concavity assumption and a subtle iterative scheme adapted from Gerard-Varet et al. (Optimal Prandtl expansion around concave boundary layer, 2020. arXiv:2005.05022) (ii) smoothing properties of the Benjamin–Ono like equation satisfied by the Triple-Deck flow at infinity. Interestingly, our treatment of the vorticity equation also adapts to the so-called hydrostatic Navier–Stokes equations: we show for this system a similar Gevrey-\(\frac{3}{2}\) linear well-posedness result for concave data, improving at the linear level the recent work (Gérard-Varet et al. in Anal PDE 13(5):1417–1455, 2020).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.