{"title":"Optimizing Consistency and Coverage in Configurational Causal Modeling","authors":"Michael Baumgartner, Mathias Ambühl","doi":"10.1177/0049124121995554","DOIUrl":null,"url":null,"abstract":"Consistency and coverage are two core parameters of model fit used by configurational comparative methods (CCMs) of causal inference. Among causal models that perform equally well in other respects (e.g., robustness or compliance with background theories), those with higher consistency and coverage are typically considered preferable. Finding the optimally obtainable consistency and coverage scores for data δ , so far, is a matter of repeatedly applying CCMs to δ while varying threshold settings. This article introduces a procedure called ConCovOpt that calculates, prior to actual CCM analyses, the consistency and coverage scores that can optimally be obtained by models inferred from δ . Moreover, we show how models reaching optimal scores can be methodically built in case of crisp-set and multi-value data. ConCovOpt is a tool, not for blindly maximizing model fit, but for rendering transparent the space of viable models at optimal fit scores in order to facilitate informed model selection—which, as we demonstrate by various data examples, may have substantive modeling implications.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"52 1","pages":"1288 - 1320"},"PeriodicalIF":6.5000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0049124121995554","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0049124121995554","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 5
Abstract
Consistency and coverage are two core parameters of model fit used by configurational comparative methods (CCMs) of causal inference. Among causal models that perform equally well in other respects (e.g., robustness or compliance with background theories), those with higher consistency and coverage are typically considered preferable. Finding the optimally obtainable consistency and coverage scores for data δ , so far, is a matter of repeatedly applying CCMs to δ while varying threshold settings. This article introduces a procedure called ConCovOpt that calculates, prior to actual CCM analyses, the consistency and coverage scores that can optimally be obtained by models inferred from δ . Moreover, we show how models reaching optimal scores can be methodically built in case of crisp-set and multi-value data. ConCovOpt is a tool, not for blindly maximizing model fit, but for rendering transparent the space of viable models at optimal fit scores in order to facilitate informed model selection—which, as we demonstrate by various data examples, may have substantive modeling implications.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.