Zhihui Wang, X. Zhang, Ruiquan Liao, Yu Lei, Z. Fang
{"title":"Study on Pressure Drop Characteristics of a Two-Stage Swirler Separator","authors":"Zhihui Wang, X. Zhang, Ruiquan Liao, Yu Lei, Z. Fang","doi":"10.2118/208592-pa","DOIUrl":null,"url":null,"abstract":"\n The vane swirler separator is widely used in the separation process of wet natural gas owing to a small volume, high efficiency, economy, and environmental protection. In addition to the separation efficiency, the pressure drop is also an important technical and operational index for evaluating the performance of the swirler. In this study, the pressure drop of a swirler vane separator was studied through laboratory experiments and numerical simulations. Through the visualization experimental study of the liquid membrane formation rule and its movement pattern, the reduced gas velocity on the pressure drop was divided into three stages. For a gas superficial velocity less than 5.69 m/s, the effect of gas superficial velocity on the pressure drop was small; for a gas superficial velocity greater than 16.57 m/s, the pressure drop increased significantly with an increase in gas flow rate, and the maximum pressure drop was generated by the two-stage swirler, downstream of which the pressure decreased precipitously. We also observed that when the liquid volume content was less than 3%, the gas superficial velocity was the dominant factor affecting the change in the pressure drop. The average relative error of the pressure drop prediction model based on the conservation of the energy law was 6.16%, which indicated a high calculation accuracy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/208592-pa","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The vane swirler separator is widely used in the separation process of wet natural gas owing to a small volume, high efficiency, economy, and environmental protection. In addition to the separation efficiency, the pressure drop is also an important technical and operational index for evaluating the performance of the swirler. In this study, the pressure drop of a swirler vane separator was studied through laboratory experiments and numerical simulations. Through the visualization experimental study of the liquid membrane formation rule and its movement pattern, the reduced gas velocity on the pressure drop was divided into three stages. For a gas superficial velocity less than 5.69 m/s, the effect of gas superficial velocity on the pressure drop was small; for a gas superficial velocity greater than 16.57 m/s, the pressure drop increased significantly with an increase in gas flow rate, and the maximum pressure drop was generated by the two-stage swirler, downstream of which the pressure decreased precipitously. We also observed that when the liquid volume content was less than 3%, the gas superficial velocity was the dominant factor affecting the change in the pressure drop. The average relative error of the pressure drop prediction model based on the conservation of the energy law was 6.16%, which indicated a high calculation accuracy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.