Basic fibroblast growth factor-loaded methacrylate gelatin hydrogel microspheres for spinal nerve regeneration.

Smart medicine Pub Date : 2023-03-28 eCollection Date: 2023-05-01 DOI:10.1002/SMMD.20220038
Xiaoyan Chen, Lei Ren, Hui Zhang, Yangnan Hu, Menghui Liao, Yingbo Shen, Kaichen Wang, Jiaying Cai, Hong Cheng, Jiamin Guo, Yanru Qi, Hao Wei, Xiaokun Li, Luoran Shang, Jian Xiao, Jingwu Sun, Renjie Chai
{"title":"Basic fibroblast growth factor-loaded methacrylate gelatin hydrogel microspheres for spinal nerve regeneration.","authors":"Xiaoyan Chen, Lei Ren, Hui Zhang, Yangnan Hu, Menghui Liao, Yingbo Shen, Kaichen Wang, Jiaying Cai, Hong Cheng, Jiamin Guo, Yanru Qi, Hao Wei, Xiaokun Li, Luoran Shang, Jian Xiao, Jingwu Sun, Renjie Chai","doi":"10.1002/SMMD.20220038","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury is a severe central nervous system injury, and developing appropriate drug delivery platforms for spinal nerve regeneration is highly anticipated. Here, we propose a basic fibroblast growth factor (bFGF)-loaded methacrylate gelatin (GelMA) hydrogel microsphere with ideal performances for spinal cord injury repair. Benefitting from the precise droplet manipulation capability of the microfluidic technology, the GelMA microspheres possess uniform and satisfactory size and good stability. More importantly, by taking advantage of the porous structures and facile chemical modification of the GelMA microspheres, bFGF could be easily loaded and gradually released. By co-culturing with neural stem cells, it is validated that the bFGF-loaded GelMA microspheres could effectively promote the proliferation and differentiation of neural stem cells. We also confirm the effective role of the bFGF-loaded GelMA microspheres in nerve repair of spinal cord injury in rats. Our results demonstrate the potential value of the microspheres for applications in repairing central nervous system injuries.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20220038"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20220038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury is a severe central nervous system injury, and developing appropriate drug delivery platforms for spinal nerve regeneration is highly anticipated. Here, we propose a basic fibroblast growth factor (bFGF)-loaded methacrylate gelatin (GelMA) hydrogel microsphere with ideal performances for spinal cord injury repair. Benefitting from the precise droplet manipulation capability of the microfluidic technology, the GelMA microspheres possess uniform and satisfactory size and good stability. More importantly, by taking advantage of the porous structures and facile chemical modification of the GelMA microspheres, bFGF could be easily loaded and gradually released. By co-culturing with neural stem cells, it is validated that the bFGF-loaded GelMA microspheres could effectively promote the proliferation and differentiation of neural stem cells. We also confirm the effective role of the bFGF-loaded GelMA microspheres in nerve repair of spinal cord injury in rats. Our results demonstrate the potential value of the microspheres for applications in repairing central nervous system injuries.

碱性成纤维细胞生长因子装载甲基丙烯酸酯明胶水凝胶微球用于脊神经再生
脊髓损伤是一种严重的中枢神经系统损伤,开发合适的脊髓神经再生药物递送平台备受期待。在此,我们提出了一种负载碱性成纤维细胞生长因子(bFGF)的甲基丙烯酸酯明胶(GelMA)水凝胶微球,该微球具有理想的脊髓损伤修复性能。得益于微流体技术的精确液滴操作能力,GelMA微球具有均匀、令人满意的尺寸和良好的稳定性。更重要的是,通过利用GelMA微球的多孔结构和容易的化学修饰,bFGF可以很容易地负载并逐渐释放。通过与神经干细胞共培养,验证了负载bFGF的GelMA微球可以有效促进神经干细胞的增殖和分化。我们还证实了bFGF负载的GelMA微球在大鼠脊髓损伤神经修复中的有效作用。我们的研究结果证明了微球在修复中枢神经系统损伤方面的潜在应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信