Paseka T. Moshapo, Blessing D. Mkhonazi, Euphrent M. Mabila
{"title":"Palladium-Catalysed Reductive Aminocarbonylation of Aryl Bromides and Iodides with Nitroarenes","authors":"Paseka T. Moshapo, Blessing D. Mkhonazi, Euphrent M. Mabila","doi":"10.1055/s-0040-1720041","DOIUrl":null,"url":null,"abstract":"Amide functional groups are a structural feature in a vast array of beneficial organic molecules. This has resulted in a surge in new methodologies developed to enable access to this functional group using a broad range of coupling partners. Herein, we report a palladium-catalysed reductive aminocarbonylation of aryl bromides and iodides with nitroarenes to afford the respective amide products. The developed protocol employs Mo(CO)6 as a carbonyl source and a combination of Zn and TMSCl as co-reducing agents. For most substrates, the anticipated amide products were obtained in modest to high amide product yields.","PeriodicalId":22135,"journal":{"name":"SynOpen","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SynOpen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0040-1720041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Amide functional groups are a structural feature in a vast array of beneficial organic molecules. This has resulted in a surge in new methodologies developed to enable access to this functional group using a broad range of coupling partners. Herein, we report a palladium-catalysed reductive aminocarbonylation of aryl bromides and iodides with nitroarenes to afford the respective amide products. The developed protocol employs Mo(CO)6 as a carbonyl source and a combination of Zn and TMSCl as co-reducing agents. For most substrates, the anticipated amide products were obtained in modest to high amide product yields.