Molecular dynamics simulations of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) and TKX-50-based PBXs with four energetic binders

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0024
Hu Niu, Yan Xing, Shu-sen Chen, Shaohua Jin, Lijie Li
{"title":"Molecular dynamics simulations of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) and TKX-50-based PBXs with four energetic binders","authors":"Hu Niu, Yan Xing, Shu-sen Chen, Shaohua Jin, Lijie Li","doi":"10.1515/epoly-2023-0024","DOIUrl":null,"url":null,"abstract":"Abstract Four energetic binders, polyglycidyl nitrate (PGN), poly(3-nitratomethyl-3-methyloxetane) (PNIMMO), poly(bis(azidomethyl)oxetane) (PBAMO), and glycidyl azide polymer (GAP) were, respectively, mixed with dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50), forming TKX-50-based polymer bonded explosives (PBXs). Interfacial forces (binding energies) under different temperatures, mechanical properties (tensile modulus, bulk modulus, shear modulus, and Poisson’s ratio), and moldability of TKX-50-based PBXs were investigated by employing molecular dynamics simulation, the energy characteristics of TKX-50-based PBXs were calculated by Chapman–Jouguet (C–J) detonated theory. Results show that temperature has little effect on the binding energies, but the binding energies between every energetic binder and each surface of TKX-50 are different and the order of combined ability between four energetic binders and TKX-50 decrease as follows: PNIMMO > PBAMO > PGN > GAP. Compared with TKX-50, the addition of four energetic binders makes the rigidity of TKX-50-based PBXs decrease and the plasticity improve, the plastic ability rank is in the order of PGN > PNIMMO > PBAMO > GAP. In addition, the moldability of TKX-50-based PBXs is obviously improved, the increasing order is PGN > PNIMMO > PBAMO > GAP. Finally, the detonation performances indicate that compared with common binder, the addition of the energetic binder makes TKX-50-based PBXs have higher energy under the same condition.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0024","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Four energetic binders, polyglycidyl nitrate (PGN), poly(3-nitratomethyl-3-methyloxetane) (PNIMMO), poly(bis(azidomethyl)oxetane) (PBAMO), and glycidyl azide polymer (GAP) were, respectively, mixed with dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50), forming TKX-50-based polymer bonded explosives (PBXs). Interfacial forces (binding energies) under different temperatures, mechanical properties (tensile modulus, bulk modulus, shear modulus, and Poisson’s ratio), and moldability of TKX-50-based PBXs were investigated by employing molecular dynamics simulation, the energy characteristics of TKX-50-based PBXs were calculated by Chapman–Jouguet (C–J) detonated theory. Results show that temperature has little effect on the binding energies, but the binding energies between every energetic binder and each surface of TKX-50 are different and the order of combined ability between four energetic binders and TKX-50 decrease as follows: PNIMMO > PBAMO > PGN > GAP. Compared with TKX-50, the addition of four energetic binders makes the rigidity of TKX-50-based PBXs decrease and the plasticity improve, the plastic ability rank is in the order of PGN > PNIMMO > PBAMO > GAP. In addition, the moldability of TKX-50-based PBXs is obviously improved, the increasing order is PGN > PNIMMO > PBAMO > GAP. Finally, the detonation performances indicate that compared with common binder, the addition of the energetic binder makes TKX-50-based PBXs have higher energy under the same condition.
基于TKX-50和TKX-50的含四能结合物的pbx的分子动力学模拟
摘要将四种高能粘结剂,聚甘油硝酸酯(PGN)、聚(3-硝基甲基-3-甲基氧杂环丁烷)(PNIMMO)、聚双(叠氮甲基)氧杂环丁烷(PBAMO)和叠氮缩水甘油酯聚合物(GAP)分别与5,5′-双四唑-1,1′-二醇二羟基铵(TKX-50)混合,形成TKX-50基聚合物粘结炸药。采用分子动力学模拟方法研究了TKX-50基PBX在不同温度下的界面力(结合能)、力学性能(拉伸模量、体积模量、剪切模量和泊松比)和成型性,并用Chapman–Jouguet(C–J)引爆理论计算了TKX-50-基PBX的能量特性。结果表明,温度对结合能的影响不大,但每种含能粘结剂与TKX-50各表面的结合能不同,四种含能粘结材料与TKX-5 0的结合能力依次降低:PNIMMO>PBAMO>PGN>GAP。与TKX-50相比,四种高能粘结剂的加入使TKX-50基PBX的刚度降低,塑性提高,塑性能力等级为PGN>PNIMMO>PBAMO>GAP。此外,TKX-50基PBX的成型性也得到了明显的改善,其顺序为PGN>PNIMMO>PBAMO>GAP。最后,爆轰性能表明,与普通粘结剂相比,高能粘结剂的加入使TKX-50基PBX在相同条件下具有更高的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信