Raudel Pérez del Rio, Martín Hidalgo Reyes, Magdaleno Caballero Caballero, L. H. Hernández Gómez
{"title":"Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder","authors":"Raudel Pérez del Rio, Martín Hidalgo Reyes, Magdaleno Caballero Caballero, L. H. Hernández Gómez","doi":"10.17268/sci.agropecu.2022.026","DOIUrl":null,"url":null,"abstract":"A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17268/sci.agropecu.2022.026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.