Yichun Shi, Yu Pei, Nicholas Lamothe, Kirsten Macdonald, Sarah Jane Payne, Zhe She
{"title":"Electrochemical interference study of manganese and iron by multiplex method and the application for manganese analysis in drinking water","authors":"Yichun Shi, Yu Pei, Nicholas Lamothe, Kirsten Macdonald, Sarah Jane Payne, Zhe She","doi":"10.1002/elsa.202300011","DOIUrl":null,"url":null,"abstract":"<p>Manganese is an emerging concern in drinking water, due to its potential health and aesthetic effects. Although accurate and sensitive, spectroscopic techniques for Mn<sup>2+</sup> detection are costly and not capable of rapid detection. Electrochemical methods, such as cathodic stripping voltammetry, have been intensively explored as portable low-cost methods for Mn<sup>2+</sup> detection. Challenges of reliability and matrix interference are difficult to overcome with current electrochemical methods. Among the interference reagents, Fe<sup>2+</sup> is one of the biggest challenges for Mn<sup>2+</sup> detection. Herein, a new method based on multiplex chronoamperometry at potentials between 0.9 and 1.4 V by a multichannel potentiostat is explored for its ability for interference resistance and applicability for Mn<sup>2+</sup> detection in real drinking water samples. Compared to conventional one-channel electrochemical techniques, the multiplex method generates a reliable pattern that is unique to the sample components. The interference between Mn<sup>2+</sup> and Fe<sup>2+</sup> is investigated and the results are promising even at 100:1 Fe<sup>2+</sup>:Mn<sup>2+</sup> concentrations. The detection limit determined for the multiplex method was 25.3 μM, and the optimum recovery rate in a real drinking water sample was 99.8%.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202300011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202300011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Manganese is an emerging concern in drinking water, due to its potential health and aesthetic effects. Although accurate and sensitive, spectroscopic techniques for Mn2+ detection are costly and not capable of rapid detection. Electrochemical methods, such as cathodic stripping voltammetry, have been intensively explored as portable low-cost methods for Mn2+ detection. Challenges of reliability and matrix interference are difficult to overcome with current electrochemical methods. Among the interference reagents, Fe2+ is one of the biggest challenges for Mn2+ detection. Herein, a new method based on multiplex chronoamperometry at potentials between 0.9 and 1.4 V by a multichannel potentiostat is explored for its ability for interference resistance and applicability for Mn2+ detection in real drinking water samples. Compared to conventional one-channel electrochemical techniques, the multiplex method generates a reliable pattern that is unique to the sample components. The interference between Mn2+ and Fe2+ is investigated and the results are promising even at 100:1 Fe2+:Mn2+ concentrations. The detection limit determined for the multiplex method was 25.3 μM, and the optimum recovery rate in a real drinking water sample was 99.8%.